Pulsed Electrocatalysis Enabling High Overall Nitrogen Fixation Performance for Atomically Dispersed Fe on TiO2
Mingxia Guo
College of Chemistry and Chemical Engineering Institution Qingdao University, Qingdao, 266071 Shandong, P. R. China
These authors contributed equally to this work.
Search for more papers by this authorLong Fang
College of Chemistry and Chemical Engineering Institution Qingdao University, Qingdao, 266071 Shandong, P. R. China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Linlin Zhang
College of Chemistry and Chemical Engineering Institution Qingdao University, Qingdao, 266071 Shandong, P. R. China
Search for more papers by this authorMingzhu Li
College of Chemistry and Chemical Engineering Institution Qingdao University, Qingdao, 266071 Shandong, P. R. China
Search for more papers by this authorMeiyu Cong
State Key Laboratory of Fine Chemicals, Dalian University of Technology (DUT), Dalian, 116024 Liaoning, P. R. China
Search for more papers by this authorXiping Guan
College of Chemistry and Chemical Engineering Institution Qingdao University, Qingdao, 266071 Shandong, P. R. China
Search for more papers by this authorChuanwei Shi
College of Chemistry and Chemical Engineering Institution Qingdao University, Qingdao, 266071 Shandong, P. R. China
Search for more papers by this authorChunLei Gu
College of Chemistry and Chemical Engineering Institution Qingdao University, Qingdao, 266071 Shandong, P. R. China
Search for more papers by this authorCorresponding Author
Xia Liu
College of Chemistry and Chemical Engineering Institution Qingdao University, Qingdao, 266071 Shandong, P. R. China
Search for more papers by this authorYong Wang
Technische Universität München Department Chemie, Lichtenbergstr. 4, 85748 Garching, Germany
Search for more papers by this authorCorresponding Author
Xin Ding
College of Chemistry and Chemical Engineering Institution Qingdao University, Qingdao, 266071 Shandong, P. R. China
State Key Laboratory of Fine Chemicals, Dalian University of Technology (DUT), Dalian, 116024 Liaoning, P. R. China
Search for more papers by this authorMingxia Guo
College of Chemistry and Chemical Engineering Institution Qingdao University, Qingdao, 266071 Shandong, P. R. China
These authors contributed equally to this work.
Search for more papers by this authorLong Fang
College of Chemistry and Chemical Engineering Institution Qingdao University, Qingdao, 266071 Shandong, P. R. China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Linlin Zhang
College of Chemistry and Chemical Engineering Institution Qingdao University, Qingdao, 266071 Shandong, P. R. China
Search for more papers by this authorMingzhu Li
College of Chemistry and Chemical Engineering Institution Qingdao University, Qingdao, 266071 Shandong, P. R. China
Search for more papers by this authorMeiyu Cong
State Key Laboratory of Fine Chemicals, Dalian University of Technology (DUT), Dalian, 116024 Liaoning, P. R. China
Search for more papers by this authorXiping Guan
College of Chemistry and Chemical Engineering Institution Qingdao University, Qingdao, 266071 Shandong, P. R. China
Search for more papers by this authorChuanwei Shi
College of Chemistry and Chemical Engineering Institution Qingdao University, Qingdao, 266071 Shandong, P. R. China
Search for more papers by this authorChunLei Gu
College of Chemistry and Chemical Engineering Institution Qingdao University, Qingdao, 266071 Shandong, P. R. China
Search for more papers by this authorCorresponding Author
Xia Liu
College of Chemistry and Chemical Engineering Institution Qingdao University, Qingdao, 266071 Shandong, P. R. China
Search for more papers by this authorYong Wang
Technische Universität München Department Chemie, Lichtenbergstr. 4, 85748 Garching, Germany
Search for more papers by this authorCorresponding Author
Xin Ding
College of Chemistry and Chemical Engineering Institution Qingdao University, Qingdao, 266071 Shandong, P. R. China
State Key Laboratory of Fine Chemicals, Dalian University of Technology (DUT), Dalian, 116024 Liaoning, P. R. China
Search for more papers by this authorAbstract
Atomically dispersed Fe was designed on TiO2 and explored as a Janus electrocatalyst for both nitrogen oxidation reaction (NOR) and nitrogen reduction reaction (NRR) in a two-electrode system. Pulsed electrochemical catalysis (PE) was firstly involved to inhibit the competitive hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Excitingly, an unanticipated yield of 7055.81 μmol h−1 g−1cat. and 12 868.33 μmol h−1 g−1cat. were obtained for NOR and NRR at 3.5 V, respectively, 44.94 times and 7.8 times increase in FE than the conventional constant voltage electrocatalytic method. Experiments and density functional theory (DFT) calculations revealed that the single-atom Fe could stabilize the oxygen vacancy, lower the energy barrier for the vital rupture of N≡N, and result in enhanced N2 fixation performance. More importantly, PE could effectively enhance the N2 supply by reducing competitive O2 and H2 agglomeration, inhibit the electrocatalytic by-product formation for longstanding *OOH and *H intermediates, and promote the non-electrocatalytic process of N2 activation.
Open Research
Data Availability Statement
The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202217635-sup-0001-misc_information.pdf3.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1B. H. R. Suryanto, K. Matuszek, J. Choi, R. Y. Hodgetts, H. L. Du, J. M. Bakker, C. S. M. Kang, P. V. Cherepanov, A. N. Simonov, D. R. MacFarlane, Science 2021, 372, 1187–1191.
- 2S. Wu, S. C. E. Tsang, Trends Chem. 2021, 3, 660–673.
- 3U. B. Shahid, K. Siddharth, M. Shao, Curr. Opin. Electrochem. 2021, 30, 100790.
- 4B. H. R. Suryanto, H.-L. Du, D. Wang, J. Chen, A. N. Simonov, D. R. MacFarlane, Nat. Catal. 2019, 2, 290–296.
- 5H. D. Shen, C. Choi, J. Masa, X. Li, J. S. Qiu, Y. Jung, Z. Y. Sun, Chem 2021, 7, 1708–1754.
- 6W. Guo, K. Zhang, Z. Liang, R. Zou, Q. Xu, Chem. Soc. Rev. 2019, 48, 5658–5716.
- 7X. M. Yu, P. Han, Z. X. Wei, L. S. Huang, Z. X. Gu, S. J. Peng, S. J. Ma, G. F. Zheng, Joule 2018, 2, 1610–1622.
- 8Y. Wang, T. Li, Y. Yu, B. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202115409; Angew. Chem. 2022, 134, e202115409.
- 9Z. Nie, L. Zhang, X. Ding, M. Cong, F. Xu, L. Ma, M. Guo, M. Li, L. Zhang, Adv. Mater. 2022, 34, 2108180.
- 10D. Li, L. Zan, S. Chen, Z. J. Shi, P. Chen, Z. Xi, D. Deng, Natl. Sci. Rev. 2022, 9, nwac042.
- 11J. Lim, C. A. Fernández, S. W. Lee, M. C. Hatzell, ACS Energy Lett. 2021, 6, 3676–3685.
- 12P. Xia, X. Pan, S. Jiang, J. Yu, B. He, P. M. Ismail, W. Bai, J. Yang, L. Yang, H. Zhang, M. Cheng, H. Li, Q. Zhang, C. Xiao, Y. Xie, Adv. Mater. 2022, 34, 2200563.
- 13C. Dai, Y. Sun, G. Chen, A. C. Fisher, Z. J. Xu, Angew. Chem. Int. Ed. 2020, 59, 9418–9422; Angew. Chem. 2020, 132, 9504–9508.
- 14S. Han, C. Wang, Y. Wang, Y. Yu, B. Zhang, Angew. Chem. Int. Ed. 2021, 60, 4474–4478; Angew. Chem. 2021, 133, 4524–4528.
- 15M. Kuang, Y. Wang, W. Fang, H. Tan, M. Chen, J. Yao, C. Liu, J. Xu, K. Zhou, Q. Yan, Adv. Mater. 2020, 32, 2002189.
- 16T. L. Li, S. H. Han, C. H. Wang, Y. M. Huang, Y. T. Wang, Y. F. Yu, B. Zhang, ACS Catal. 2021, 11, 14032–14037.
- 17Y. Wang, Y. Yu, R. Jia, C. Zhang, B. Zhang, Natl. Sci. Rev. 2019, 6, 730–738.
- 18H. Iriawan, S. Z. Andersen, X. Zhang, B. M. Comer, J. Barrio, P. Chen, A. J. Medford, I. E. L. Stephens, I. Chorkendorff, Y. ShaoHorn, Nat. Rev. Methods Primers 2021, 1, 56.
- 19J. G. Chen, R. M. Crooks, L. C. Seefeldt, K. L. Bren, R. M. Bullock, M. Y. Darensbourg, P. L. Holland, B. Hoffman, M. J. Janik, A. K. Jones, M. G. Kanatzidis, P. King, K. M. Lancaster, S. V. Lymar, P. Pfromm, W. F. Schneider, R. R. Schrock, Science 2018, 360, 6391.
- 20M. Anand, C. S. Abraham, J. K. Norskov, Chem. Sci. 2021, 12, 6442–6448.
- 21E. Tayyebi, A. B. Hoskuldsson, A. Wark, N. Atrak, B. M. Comer, A. J. Medford, E. Skulason, J. Phys. Chem. Lett. 2022, 13, 6123–6129.
- 22G. F. Chen, X. Cao, S. Wu, X. Zeng, L. X. Ding, M. Zhu, H. Wang, J. Am. Chem. Soc. 2017, 139, 9771–9774.
- 23X. Guo, H. Du, F. Qu, J. Li, J. Mater. Chem. A 2019, 7, 3531–3543.
- 24S. S. Liu, T. Qian, M. F. Wang, H. Q. Ji, X. W. Shen, C. Wang, C. L. Yan, Nat. Catal. 2021, 4, 322–331.
- 25Y. Zhang, F. Du, R. Wang, X. Ling, X. Wang, Q. Shen, Y. Xiong, T. Li, Y. Zhou, Z. Zou, J. Mater. Chem. A 2021, 9, 17442–17450.
- 26Y. Ding, W. Zhou, L. Xie, S. Chen, J. Gao, F. Sun, G. Zhao, Y. Qin, J. Mater. Chem. A 2021, 9, 15948–15954.
- 27R. Casebolt, K. Levine, J. Suntivich, T. Hanrath, Joule 2021, 5, 1987–2026.
- 28Y. Ding, L. Xie, W. Zhou, F. Sun, J. Gao, C. Yang, G. Zhao, Y. Qin, J. Ma, Appl. Catal. B 2022, 316, 121688.
- 29R. C. DiDomenico, T. Hanrath, ACS Energy Lett. 2022, 7, 292–299.
- 30H. Cheng, P. Cui, F. Wang, L. X. Ding, H. Wang, Angew. Chem. Int. Ed. 2019, 58, 15541–15547; Angew. Chem. 2019, 131, 15687–15693.
- 31H. Cheng, L. X. Ding, G. F. Chen, L. Zhang, J. Xue, H. Wang, Adv. Mater. 2018, 30, 1803694.
- 32M. Wang, S. Liu, T. Qian, J. Liu, J. Zhou, H. Ji, J. Xiong, J. Zhong, C. Yan, Nat. Commun. 2019, 10, 341.
- 33T. Wu, X. Zhu, Z. Xing, S. Mou, C. Li, Y. Qiao, Q. Liu, Y. Luo, X. Shi, Y. Zhang, X. Sun, Angew. Chem. Int. Ed. 2019, 58, 18449–18453; Angew. Chem. 2019, 131, 18620–18624.
- 34Y. Zhao, F. Li, W. Li, Y. Li, C. Liu, Z. Zhao, Y. Shan, Y. Ji, L. Sun, Angew. Chem. Int. Ed. 2021, 60, 20331–20341; Angew. Chem. 2021, 133, 20494–20504.
- 35T. Li, S. Han, C. Cheng, Y. Wang, X. Du, Y. Yu, B. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202204541; Angew. Chem. 2022, 134, e202204541.
- 36W. Fang, C. Du, M. Kuang, M. Chen, W. Huang, H. Ren, J. Xu, A. Feldhoff, Q. Yan, Chem. Commun. 2020, 56, 5779–5782.
- 37N. Cao, Z. Chen, K. Zang, J. Xu, J. Zhong, J. Luo, X. Xu, G. Zheng, Nat. Commun. 2019, 10, 2877.
- 38L. Zhang, M. Cong, X. Ding, Y. Jin, F. Xu, Y. Wang, L. Chen, L. Zhang, Angew. Chem. Int. Ed. 2020, 59, 10888–10893; Angew. Chem. 2020, 132, 10980–10985.
- 39K. I. Hadjiivanov, Catal. Rev. 2000, 42, 71–144.
- 40S. Murmu, S. Paul, S. Kapse, R. Thapa, S. Chattopadhyay, A. N, S. N. Jha, D. Bhattacharyya, U. K. Ghorai, J. Mater. Chem. A 2021, 9, 14477–14484.
- 41U. K. Ghorai, S. Paul, B. Ghorai, A. Adalder, S. Kapse, R. Thapa, A. Nagendra, A. Gain, ACS Nano 2021, 15, 5230–5239.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.