A Configurationally Confined Thermally Activated Delayed Fluorescent Two-Coordinate CuI Complex for Efficient Blue Electroluminescence
Hai-Jie Wang
School of Chemistry and Biological Engineering, Department of Chemistry, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yuan Liu
Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science & Technology University, Beijing, 100192 China
Search for more papers by this authorBaoqiu Yu
School of Chemistry and Biological Engineering, Department of Chemistry, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083 China
Search for more papers by this authorShi-Quan Song
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorProf. Dr. You-Xuan Zheng
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorDr. Kanglei Liu
School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorProf. Dr. Pangkuan Chen
School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorProf. Dr. Hailong Wang
School of Chemistry and Biological Engineering, Department of Chemistry, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083 China
Search for more papers by this authorProf. Dr. Jianzhuang Jiang
School of Chemistry and Biological Engineering, Department of Chemistry, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Tian-Yi Li
School of Chemistry and Biological Engineering, Department of Chemistry, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083 China
Contribution: Funding acquisition (lead), Investigation (lead), Writing - review & editing (lead)
Search for more papers by this authorHai-Jie Wang
School of Chemistry and Biological Engineering, Department of Chemistry, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yuan Liu
Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science & Technology University, Beijing, 100192 China
Search for more papers by this authorBaoqiu Yu
School of Chemistry and Biological Engineering, Department of Chemistry, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083 China
Search for more papers by this authorShi-Quan Song
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorProf. Dr. You-Xuan Zheng
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorDr. Kanglei Liu
School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorProf. Dr. Pangkuan Chen
School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorProf. Dr. Hailong Wang
School of Chemistry and Biological Engineering, Department of Chemistry, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083 China
Search for more papers by this authorProf. Dr. Jianzhuang Jiang
School of Chemistry and Biological Engineering, Department of Chemistry, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Tian-Yi Li
School of Chemistry and Biological Engineering, Department of Chemistry, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083 China
Contribution: Funding acquisition (lead), Investigation (lead), Writing - review & editing (lead)
Search for more papers by this authorAbstract
Thermally activated delayed fluorescence (TADF) from linear two-coordinate coinage metal complexes is sensitive to the geometric arrangement of the ligands. Herein we realize the tuning of configuration from coplanar to orthogonal gradually by variation of substituents. In a complex with confined twist configuration, its blue emission peaking at 458 nm presents a high ΦPL of 0.74 and a short τTADF of 1.9 μs, which indicates a fast enough kr,TADF of 3.9×105 s−1 and a depressed knr of 1.4×105 s−1. Such outstanding luminescent properties are attributed to the proper overlap of HOMO and LUMO on CuI d orbitals that guarantees not only small ΔEST but also sufficient transition oscillator strength for fast
. Vacuum-deposited blue OLEDs with either doped or host-free emissive layer present external quantum efficiencies over 20 % and 10 %, respectively, demonstrating the practicality of the configurationally confined strategy for efficient linear CuI TADF emitters.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202217195-sup-0001-misc_information.pdf2.3 MB | Supporting Information |
ange202217195-sup-0001-SI_(MAC)Cu(CF3Indole).cif718.6 KB | Supporting Information |
ange202217195-sup-0001-SI_(MAC)Cu(DiMeIndole).cif1,019.6 KB | Supporting Information |
ange202217195-sup-0001-SI_(MAC)Cu(Indole).cif18.5 KB | Supporting Information |
ange202217195-sup-0001-SI_(MAC)Cu(THCz).cif840.7 KB | Supporting Information |
ange202217195-sup-0001-SI_MACCuPhIndole.cif641.8 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. Adachi, M. A. Baldo, M. E. Thompson, S. R. Forrest, J. Appl. Phys. 2001, 90, 5048–5051.
- 2M. Segal, M. A. Baldo, R. J. Holmes, S. R. Forrest, Z. G. Soos, Phys. Rev. B 2003, 68, 075211.
- 3K. Goushi, K. Yoshida, K. Sato, C. Adachi, Nat. Photonics 2012, 6, 253–258.
- 4M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature 1998, 395, 151–154.
- 5S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H.-E. Lee, C. Adachi, P. E. Burrows, S. R. Forrest, M. E. Thompson, J. Am. Chem. Soc. 2001, 123, 4304–4312.
- 6S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, R. Kwong, I. Tsyba, M. Bortz, B. Mui, R. Bau, M. E. Thompson, Inorg. Chem. 2001, 40, 1704–1711.
- 7H. Yersin, A. F. Rausch, R. Czerwieniec, T. Hofbeck, T. Fischer, Coord. Chem. Rev. 2011, 255, 2622–2652.
- 8T.-Y. Li, J. Wu, Z.-G. Wu, Y.-X. Zheng, J.-L. Zuo, Y. Pan, Coord. Chem. Rev. 2018, 374, 55–92.
- 9H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234–238.
- 10Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, C. Adachi, Nat. Photonics 2014, 8, 326–332.
- 11T. Hatakeyama, K. Shiren, K. Nakajima, S. Nomura, S. Nakatsuka, K. Kinoshita, J. Ni, Y. Ono, T. Ikuta, Adv. Mater. 2016, 28, 2777–2781.
- 12X. Tang, L.-S. Cui, H.-C. Li, A. J. Gillett, F. Auras, Y.-K. Qu, C. Zhong, S. T. E. Jones, Z.-Q. Jiang, R. H. Friend, L.-S. Liao, Nat. Mater. 2020, 19, 1332–1338.
- 13Y. Tsuchiya, S. Diesing, F. Bencheikh, Y. Wada, P. L. dos Santos, H. Kaji, E. Zysman-Colman, I. D. W. Samuel, C. Adachi, J. Phys. Chem. A 2021, 125, 8074–8089.
- 14Z. Yang, Z. Mao, Z. Xie, Y. Zhang, S. Liu, J. Zhao, J. Xu, Z. Chi, M. P. Aldred, Chem. Soc. Rev. 2017, 46, 915–1016.
- 15G. Blasse, P. A. Breddels, D. R. McMillin, Chem. Phys. Lett. 1984, 109, 24–26.
- 16J. C. Deaton, S. C. Switalski, D. Y. Kondakov, R. H. Young, T. D. Pawlik, D. J. Giesen, S. B. Harkins, A. J. M. Miller, S. F. Mickenberg, J. C. Peters, J. Am. Chem. Soc. 2010, 132, 9499–9508.
- 17R. Czerwieniec, J. Yu, H. Yersin, Inorg. Chem. 2011, 50, 8293–8301.
- 18M. J. Leitl, V. A. Krylova, P. I. Djurovich, M. E. Thompson, H. Yersin, J. Am. Chem. Soc. 2014, 136, 16032–16038.
- 19T. Hofbeck, U. Monkowius, H. Yersin, J. Am. Chem. Soc. 2015, 137, 399–404.
- 20H. Yersin, R. Czerwieniec, M. Z. Shafikov, A. F. Suleymanova, ChemPhysChem 2017, 18, 3508–3535.
- 21M. Z. Shafikov, A. F. Suleymanova, R. Czerwieniec, H. Yersin, Inorg. Chem. 2017, 56, 13274–13285.
- 22A. Schinabeck, M. J. Leitl, H. Yersin, J. Phys. Chem. Lett. 2018, 9, 2848–2856.
- 23M. Klein, N. Rau, M. Wende, J. Sundermeyer, G. Cheng, C.-M. Che, A. Schinabeck, H. Yersin, Chem. Mater. 2020, 32, 10365–10382.
- 24D. Di, A. S. Romanov, L. Yang, J. M. Richter, J. P. H. Rivett, S. Jones, T. H. Thomas, M. Abdi Jalebi, R. H. Friend, M. Linnolahti, M. Bochmann, D. Credgington, Science 2017, 356, 159–163.
- 25R. Hamze, J. L. Peltier, D. Sylvinson, M. Jung, J. Cardenas, R. Haiges, M. Soleilhavoup, R. Jazzar, P. I. Djurovich, G. Bertrand, M. E. Thompson, Science 2019, 363, 601–606.
- 26R. Hamze, S. Shi, S. C. Kapper, D. S. Muthiah Ravinson, L. Estergreen, M.-C. Jung, A. C. Tadle, R. Haiges, P. I. Djurovich, J. L. Peltier, R. Jazzar, G. Bertrand, S. E. Bradforth, M. E. Thompson, J. Am. Chem. Soc. 2019, 141, 8616–8626.
- 27S. Shi, M. C. Jung, C. Coburn, A. Tadle, D. Sylvinson, P. I. Djurovich, S. R. Forrest, M. E. Thompson, J. Am. Chem. Soc. 2019, 141, 3576–3588.
- 28T.-Y. Li, D. S. Muthiah Ravinson, R. Haiges, P. I. Djurovich, M. E. Thompson, J. Am. Chem. Soc. 2020, 142, 6158–6172.
- 29T.-Y. Li, J. Schaab, P. I. Djurovich, M. E. Thompson, J. Mater. Chem. C 2022, 10, 4674–4683.
- 30J.-G. Yang, X.-F. Song, G. Cheng, S. Wu, X. Feng, G. Cui, W.-P. To, X. Chang, Y. Chen, C.-M. Che, C. Yang, K. Li, ACS Appl. Mater. Interfaces 2022, 14, 13539–13549.
- 31X. Feng, J.-G. Yang, J. Miao, C. Zhong, X. Yin, N. Li, C. Wu, Q. Zhang, Y. Chen, K. Li, C. Yang, Angew. Chem. Int. Ed. 2022, 61, e202209451; Angew. Chem. 2022, 134, e202209451.
- 32Q. Gu, F. Chotard, J. Eng, A.-P. M. Reponen, I. J. Vitorica-Yrezabal, A. W. Woodward, T. J. Penfold, D. Credgington, M. Bochmann, A. S. Romanov, Chem. Mater. 2022, 34, 7526–7542.
- 33J. Li, L. Wang, Z. Zhao, X. Li, X. Yu, P. Huo, Q. Jin, Z. Liu, Z. Bian, C. Huang, Angew. Chem. Int. Ed. 2020, 59, 8210–8217; Angew. Chem. 2020, 132, 8287–8294.
- 34T.-Y. Li, P. I. Djurovich, M. E. Thompson, Inorg. Chim. Acta 2021, 517, 120188.
- 35Deposition numbers 2219340, 2219341, 2219342, 2219343 and 2219344 (for Cu1–Cu5 respectively) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 36B. L. van Duuren, J. Org. Chem. 1961, 26, 2954–2960.
- 37C. J. Fischer, A. Gafni, D. G. Steel, J. A. Schauerte, J. Am. Chem. Soc. 2002, 124, 10359–10366.
- 38S. Thompson, J. Eng, T. J. Penfold, J. Chem. Phys. 2018, 149, 014304.
- 39J. Eng, S. Thompson, H. Goodwin, D. Credgington, T. J. Penfold, Phys. Chem. Chem. Phys. 2020, 22, 4659–4667.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.