Enhanced Activity of Enzyme Immobilized on Hydrophobic ZIF-8 Modified by Ni2+ Ions
Corresponding Author
Xiao-Gang Yang
College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang, 471934 P. R. China
Search for more papers by this authorJi-Rui Zhang
College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang, 471934 P. R. China
Search for more papers by this authorXu-Ke Tian
College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang, 471934 P. R. China
Search for more papers by this authorJian-Hua Qin
College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang, 471934 P. R. China
Search for more papers by this authorXin-Ya Zhang
College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang, 471934 P. R. China
Search for more papers by this authorCorresponding Author
Lu-Fang Ma
College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang, 471934 P. R. China
Search for more papers by this authorCorresponding Author
Xiao-Gang Yang
College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang, 471934 P. R. China
Search for more papers by this authorJi-Rui Zhang
College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang, 471934 P. R. China
Search for more papers by this authorXu-Ke Tian
College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang, 471934 P. R. China
Search for more papers by this authorJian-Hua Qin
College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang, 471934 P. R. China
Search for more papers by this authorXin-Ya Zhang
College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang, 471934 P. R. China
Search for more papers by this authorCorresponding Author
Lu-Fang Ma
College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang, 471934 P. R. China
Search for more papers by this authorAbstract
The development of efficient enzyme immobilization to promote their recyclability and activity is highly desirable. Zeolitic imidazolate framework-8 (ZIF-8) has been proved to be an effective platform for enzyme immobilization due to its easy preparation and biocompatibility. However, the intrinsic hydrophobic characteristic hinders its further development in this filed. Herein, a facile synthesis approach was developed to immobilize pepsin (PEP) on the ZIF-8 carrier by using Ni2+ ions as anchor (ZIF-8@PEP-Ni). By contrast, the direct coating of PEP on the surface of ZIF-8 (ZIF-8@PEP) generated significant conformational changes. Electrochemical oxygen evolution reaction (OER) was employed to study the catalytic activity of immobilized PEP. The ZIF-8@PEP-Ni composite attains remarkable OER performance with an ultralow overpotential of only 127 mV at 10 mA cm−2, which is much lower than the 690 and 919 mV overpotential values of ZIF-8@PEP and PEP, respectively.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202216699-sup-0001-misc_information.pdf5.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1F. Shahbazi Farahani, M. S. Rahmanifar, A. Noori, M. F. El-Kady, N. Hassani, M. Neek-Amal, R. B. Kaner, M. F. Mousavi, J. Am. Chem. Soc. 2022, 144, 3411–3428.
- 2M. Lu, M. Zhang, J. Liu, Y. Chen, J. P. Liao, M. Y. Yang, Y. P. Cai, S. L. Li, Y. Q. Lan, Angew. Chem. Int. Ed. 2022, 61, e202200003; Angew. Chem. 2022, 134, e202200003.
- 3H. F. Wang, L. Chen, H. Pang, S. Kaskel, Q. Xu, Chem. Soc. Rev. 2020, 49, 1414–1448.
- 4B. H. R. Suryanto, Y. Wang, R. K. Hocking, W. Adamson, C. Zhao, Nat. Commun. 2019, 10, 5599.
- 5F. Zhou, Y. Zhou, G. G. Liu, C. T. Wang, J. Wang, Rare Met. 2021, 40, 3375–3405.
- 6S. Li, Y. Gao, N. Li, L. Ge, X. Bu, P. Feng, Energy Environ. Sci. 2021, 14, 1897–1927.
- 7J. Du, F. Li, L. Sun, Chem. Soc. Rev. 2021, 50, 2663–2695.
- 8M. R. Liu, Q. L. Hong, Q. H. Li, Y. Du, H. X. Zhang, S. Chen, T. Zhou, J. Zhang, Adv. Funct. Mater. 2018, 28, 1801136.
- 9Y.-T. Xu, Z.-M. Ye, J.-W. Ye, L.-M. Cao, R.-K. Huang, J.-X. Wu, D.-D. Zhou, X.-F. Zhang, C.-T. He, J.-P. Zhang, X.-M. Chen, Angew. Chem. Int. Ed. 2019, 58, 139–143; Angew. Chem. 2019, 131, 145–149.
- 10
- 10aT. R. Ramakrishna, T. D. Nalder, W. Yang, S. N. Marshallb, C. J. Barrowa, J. Mater. Chem. B 2018, 6, 3200–3218;
- 10bW. Liang, P. Wied, F. Carraro, C. J. Sumby, B. Nidetzky, C.-K. Tsung, P. Falcaro, C. J. Doonan, Chem. Rev. 2021, 121, 1077–1129.
- 11R. A. Sheldon, A. Basso, D. Brady, Chem. Soc. Rev. 2021, 50, 5850–5862.
- 12K. Miki, H. Atomi, S. Watanabe, Acc. Chem. Res. 2020, 53, 875–886.
- 13C. Zhong, W. Ma, Y. He, D. Ouyang, G. Li, Y. Yang, Q. Zheng, H. Huang, Z. Cai, Z. Lin, ACS Appl. Mater. Interfaces 2021, 13, 52417–52424.
- 14S. Lim, G. A. Jung, D. J. Glover, D. S. Clark, Small 2019, 15, 1805558.
- 15H. T. Imam, P. C. Marr, A. C. Marr, Green Chem. 2021, 23, 4980–5005.
- 16E. Zanuso, D. G. Gomes, H. A. Ruiz, J. A. Teixeira, L. Domingues, Sustainable Energy Fuels 2021, 5, 4233–4247.
- 17A. A. Caparco, D. R. Dautel, J. A. Champion, Small 2022, 18, 2106425.
- 18J. J. Virgen-Ortíz, J. C. dos Santos, Á. Berenguer-Murcia, O. Barbosa, R. C. Rodrigues, R. Fernandez-Lafuente, J. Mater. Chem. B 2017, 5, 7461–7490.
- 19P. Jochems, Y. Satyawali, L. Diels, W. Dejonghe, Green Chem. 2011, 13, 1609–1623.
- 20M. Hartmann, X. Kostrov, Chem. Soc. Rev. 2013, 42, 6277–6289.
- 21
- 21aD. Li, M. Kassymov, X. Cai, S.-Q. Zang, H.-L. Jiang, Coord. Chem. Rev. 2020, 412, 213262;
- 21bS. Wang, H. G. T. Ly, M. Wahiduzzaman, C. Simms, I. Dovgaliuk, A. Tissot, G. Maurin, T. N. Parac-Vogt, C. Serre, Nat. Commun. 2022, 13, 1284.
- 22J. Dong, L. Liu, C. Tan, Q. Xu, J. Zhang, Z. Qiao, D. Chu, Y. Liu, Q. Zhang, J. Jiang, Y. Han, A. P. Davis, Y. Cui, Nature 2022, 602, 606–611.
- 23
- 23aY. Pan, Y. Qian, X. Zheng, S. Q. Chu, Y. Yang, C. Ding, X. Wang, S. H. Yu, H. L. Jiang, Nat. Sci. Rev. 2021, 8, nwaa224;
- 23bL.-J. Wang, S. Bai, Y.-F. Han, J. Am. Chem. Soc. 2022, 144, 16191–16198.
- 24S. Rojas, P. Horcajada, Chem. Rev. 2020, 120, 8378–8415.
- 25
- 25aY. Quan, W. Shi, Y. Song, X. Jiang, C. Wang, W. Lin, J. Am. Chem. Soc. 2021, 143, 3075–3080;
- 25bL.-J. Wang, X. Li, S. Bai, Y.-Y. Wang, Y.-F. Han, J. Am. Chem. Soc. 2020, 142, 2524–2531.
- 26L. Feng, K. Y. Wang, G. S. Day, M. R. Ryder, H. C. Zhou, Chem. Rev. 2020, 120, 13087–13133.
- 27E. M. Johnson, S. Ilic, A. J. Morris, ACS Cent. Sci. 2021, 7, 445–453.
- 28W. Xu, O. M. Yaghi, ACS Cent. Sci. 2020, 6, 1348–1354.
- 29
- 29aX. Lian, Y. Fang, E. Joseph, Q. Wang, J. Li, S. Banerjee, C. Lollar, X. Wang, H. C. Zhou, Chem. Soc. Rev. 2017, 46, 3386–3401;
- 29bS. Liang, X.-L. Wu, J. Xiong, M.-H. Zong, W.-Y. Lou, Coord. Chem. Rev. 2020, 406, 213149.
- 30
- 30aN. Ye, X. Kou, J. Shen, S. Huang, G. Chen, G. Ouyang, ChemBioChem 2020, 21, 2585–2590;
- 30bS. Huang, X. Kou, J. Shen, G. Chen, G. Ouyang, Angew. Chem. Int. Ed. 2020, 59, 8786–8798; Angew. Chem. 2020, 132, 8868–8881;
- 30cL. Zhao, J. X. Zhang, L. Bai, L. Xu, Y. Qu, Z. Li, Y. Li, L. Jing, Adv. Mater. 2022, 34, 2205303;
- 30dL. Tong, S. Huang, Y. Shen, S. Liu, X. Ma, F. Zhu, G. Chen, G. Ouyang, Nat. Commun. 2022, 13, 951.
- 31
- 31aS. Wang, Y. Chen, S. Wang, P. Li, C. A. Mirkin, O. K. Farha, J. Am. Chem. Soc. 2019, 141, 2215–2219;
- 31bL. Zhao, J. Yang, M. Gong, K. Li, J. Gu, J. Am. Chem. Soc. 2021, 143, 15145–15151.
- 32Z. Zhou, M. Vázquez-González, I. Willner, Chem. Soc. Rev. 2021, 50, 4541–4563.
- 33K. Liang, R. Ricco, C. M. Doherty, M. J. Styles, S. Bell, N. Kirby, S. Mudie, D. Haylock, A. J. Hill, C. J. Doonan, P. Falcaro, Nat. Commun. 2015, 6, 7240.
- 34
- 34aF. Lyu, Y. Zhang, R. N. Zare, J. Ge, Z. Liu, Nano Lett. 2014, 14, 5761–5765;
- 34bH. He, H. O. Han, H. Shi, Y. Tian, F. Sun, Y. Song, Q. Li, G. Zhu, ACS Appl. Mater. Interfaces 2016, 8, 24517–24524;
- 34cL.-Z. Cheong, Y. Wei, H. Wang, Z. Wang, X. Su, C. Shen, J. Nanopart. Res. 2017, 19, 280;
- 34dW.-H. Chen, M. Vázquez-González, A. Zoabi, R. Abu-Reziq, I. Willner, Nat. Catal. 2018, 1, 689–695;
- 34eL. Wang, W. Zhi, D. Lian, Y. Wang, J. Han, Y. Wang, ACS Sustainable Chem. Eng. 2019, 7, 14611–14620;
- 34fX. Wu, H. Yue, Y. Zhang, X. Gao, X. Li, L. Wang, Y. Cao, M. Hou, H. An, L. Zhang, S. Li, J. Ma, H. Lin, Y. Fu, H. Gu, W. Lou, W. Wei, R. N. Zare, J. Ge, Nat. Commun. 2019, 10, 5165;
- 34gT.-O. Knedel, E. Ricklefs, C. Schlüsener, V. B. Urlacher, C. Janiak, ChemistryOpen 2019, 8, 1337;
- 34hW. Liang, H. Xu, F. Carraro, N. K. Maddigan, Q. Li, S. G. Bell, D. M. Huang, A. Tarzia, M. B. Solomon, H. Amenitsch, L. Vaccari, C. J. Sumby, P. Falcaro, C. J. Doonan, J. Am. Chem. Soc. 2019, 141, 2348–2355;
- 34iM. Cao, H. Wang, H. Tang, D. Zhao, Y. Li, Anal. Chem. 2021, 93, 12257–12264;
- 34jJ. Liang, M. Y. B. Zulkifli, J. Yong, Z. Du, Z. Ao, A. Rawal, J. A. Scott, J. R. Harmer, J. Wang, K. Liang, J. Am. Chem. Soc. 2022, 144, 17865–17875.
- 35
- 35aT. Zoungrana, G. H. Findenegg, W. Norde, J. Colloid Interface Sci. 1997, 190, 437–448;
- 35bF. Secundo, Chem. Soc. Rev. 2013, 42, 6250–6261;
- 35cG. Iliadis, G. Zundel, B. Brzeinski, Biospectroscopy 1997, 3, 291–297.
- 36B. Panganiban, B. Qiao, T. Jiang, C. DelRe, M. M. Obadia, T. D. Nguyen, A. A. A. Smith, A. Hall, I. Sit, M. G. Crosby, P. B. Dennis, E. Drockenmuller, M. Olvera de la Cruz, T. Xu, Science 2018, 359, 1239–1243.
- 37
- 37aS. Cui, X. Wu, Y. Yang, M. Fei, S. Liu, G. Li, X. P. Gao, ACS Energy Lett. 2022, 7, 42–52;
- 37bC. Guo, Y. Zhang, Y. Guo, L. Zhang, Y. Zhang, J. Wang, Chem. Commun. 2018, 54, 252–255.
- 38J. Tang, P. Sepulveda, J. Marciniszyn, K. Chen, W. Huang, N. Tao, D. Liu, J. Lanier, Proc. Natl. Acad. Sci. USA 1973, 70, 3437–3439.
- 39A. Ganguly, B. K. Paul, S. Ghosh, S. Kar, N. Guchhait, Analyst 2013, 138, 6532–6541.
- 40
- 40aS. Wei, X. Zou, J. Tian, H. Huang, W. Guo, Z. Chen, J. Am. Chem. Soc. 2019, 141, 20335–20343;
- 40bM. Xiao, S. Wei, J. Chen, J. Tian, C. L. Brooks, E. N. G. Marsh, Z. Chen, J. Am. Chem. Soc. 2019, 141, 9980–9988.
- 41Y. Yang, H. Yao, Z. Yu, S. M. Islam, H. He, M. Yuan, Y. Yue, K. Xu, W. Hao, G. Sun, H. Li, S. Ma, P. Zapol, M. G. Kanatzidis, J. Am. Chem. Soc. 2019, 141, 10417–10430.
- 42J.-Q. Shen, P.-Q. Liao, D.-D. Zhou, C.-T. He, J.-X. Wu, W.-X. Zhang, J.-P. Zhang, X.-M. Chen, J. Am. Chem. Soc. 2017, 139, 1778–1781.
- 43S. Gutiérrez-Tarriño, J. L. Olloqui-Sariego, J. J. Calvente, G. M. Espallargas, F. Rey, A. Corma, P. Oña-Burgos, J. Am. Chem. Soc. 2020, 142, 19198–19208.
- 44
- 44aH. Zhang, J. Cao, Z. Fei, Y. Wang, J. Mol. Struct. 2012, 1021, 34–39;
- 44bY. Song, L. Cao, J. Li, S. Cong, D. Li, Z. Bao, M. Tan, Food Funct. 2019, 10, 3706–3716.
- 45
- 45aY.-Y. Hu, Y.-H. Zhang, N. Ren, Y. Tang, J. Phys. Chem. C 2009, 113, 18040–18046;
- 45bY. Pan, H. Li, J. Farmakes, F. Xiao, B. Chen, S. Ma, Z. Yang, J. Am. Chem. Soc. 2018, 140, 16032–16036.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.