A General Synthetic Route to High-Quality Perovskite Oxide Nanoparticles and Their Enhanced Solar Photocatalytic Activity
Corresponding Author
Wafa Amdouni
Université de Tunis El-Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie Analytique et Électrochimie LR99ES15, Campus Universitaire de Tunis El-Manar, 2092 Tunis, Tunisia
Université Paris-Saclay, CentraleSupélec, Laboratoire Structures, Propriétés et Modélisation des Solides, UMR CNRS 8580, 91190 Gif-sur-Yvette, France
Search for more papers by this authorMojca Otoničar
Jožef Stefan Institute and Jožef Stefan Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
Search for more papers by this authorPascale Gemeiner
Université Paris-Saclay, CentraleSupélec, Laboratoire Structures, Propriétés et Modélisation des Solides, UMR CNRS 8580, 91190 Gif-sur-Yvette, France
Search for more papers by this authorVincent Butin
Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux EA4038, 91190 Gif-sur-Yvette, France
Search for more papers by this authorNicolas Guiblin
Université Paris-Saclay, CentraleSupélec, Laboratoire Structures, Propriétés et Modélisation des Solides, UMR CNRS 8580, 91190 Gif-sur-Yvette, France
Search for more papers by this authorHager Maghraoui-Meherzi
Université de Tunis El-Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie Analytique et Électrochimie LR99ES15, Campus Universitaire de Tunis El-Manar, 2092 Tunis, Tunisia
Search for more papers by this authorCorresponding Author
Brahim Dkhil
Université Paris-Saclay, CentraleSupélec, Laboratoire Structures, Propriétés et Modélisation des Solides, UMR CNRS 8580, 91190 Gif-sur-Yvette, France
Search for more papers by this authorCorresponding Author
Wafa Amdouni
Université de Tunis El-Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie Analytique et Électrochimie LR99ES15, Campus Universitaire de Tunis El-Manar, 2092 Tunis, Tunisia
Université Paris-Saclay, CentraleSupélec, Laboratoire Structures, Propriétés et Modélisation des Solides, UMR CNRS 8580, 91190 Gif-sur-Yvette, France
Search for more papers by this authorMojca Otoničar
Jožef Stefan Institute and Jožef Stefan Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
Search for more papers by this authorPascale Gemeiner
Université Paris-Saclay, CentraleSupélec, Laboratoire Structures, Propriétés et Modélisation des Solides, UMR CNRS 8580, 91190 Gif-sur-Yvette, France
Search for more papers by this authorVincent Butin
Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux EA4038, 91190 Gif-sur-Yvette, France
Search for more papers by this authorNicolas Guiblin
Université Paris-Saclay, CentraleSupélec, Laboratoire Structures, Propriétés et Modélisation des Solides, UMR CNRS 8580, 91190 Gif-sur-Yvette, France
Search for more papers by this authorHager Maghraoui-Meherzi
Université de Tunis El-Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie Analytique et Électrochimie LR99ES15, Campus Universitaire de Tunis El-Manar, 2092 Tunis, Tunisia
Search for more papers by this authorCorresponding Author
Brahim Dkhil
Université Paris-Saclay, CentraleSupélec, Laboratoire Structures, Propriétés et Modélisation des Solides, UMR CNRS 8580, 91190 Gif-sur-Yvette, France
Search for more papers by this authorAbstract
The main limitations of current methods for synthesizing perovskite oxide (ABO3) nanoparticles (NPs), e.g., the high reagent costs and sophisticated equipment, the long time and high-temperature processing, or multiple post-processing and thermal treatment steps, hamper their full study and potential application. Here, we use a facile low temperature (50 °C) chemical bath synthesis and only one annealing step to successfully produce high phase purity and crystalline quality nano-shaped rare-earth-based REMO3 NPs (RE=La, Nd, Sm, Gd; M=Fe, Mn, Al). We also show the versatility of this approach by fabricating La0.7Sr0.3MnO3 solid solution and non-RE-based BiFeO3 perovskite. To assess the potential of the as-prepared REFeO3 and REMnO3 NPs, they are used for photocatalytic degradation of the norfloxacin antibiotic and show high efficiency. We believe this easy, robust, versatile, and general route for synthesizing ABO3-based NPs can be further explored in the vast perovskite family and beyond.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202215700-sup-0001-misc_information.pdf1.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aB. Chen, J. Yu, X. Liang, Langmuir 2011, 27, 11654–11659;
- 1bX. Niu, W. Du, W. Du, Sens. Actuators B 2004, 99, 399–404.
- 2J. T. Mefford, W. G. Hardin, S. Dai, K. P. Johnston, K. J. Stevenson, Nat. Mater. 2014, 13, 726–732.
- 3
- 3aW.-B. Li, D. Zhou, R. Xu, D.-W. Wang, J.-Z. Su, L.-X. Pang, W.-F. Liu, G.-H. Chen, ACS Appl. Energy Mater. 2019, 2, 5499–5506;
- 3bY. F. Hou, W. L. Li, T. D. Zhang, Y. Yu, R. L. Han, W. D. Fei, ACS Appl. Mater. Interfaces 2016, 8, 22354–22360;
- 3cG. Huangfu, H. Xiao, L. Guan, H. Zhong, C. Hu, Z. Shi, Y. Guo, ACS Appl. Mater. Interfaces 2020, 12, 33950–33959.
- 4
- 4aW. Zhang, M.-M. Yang, X. Liang, H.-W. Zheng, Y. Wang, W.-X. Gao, G.-L. Yuan, W.-F. Zhang, X.-G. Li, H.-S. Luo, R.-K. Zheng, Nano Energy 2015, 18, 315–324;
- 4bB. M. Pirzada, Pushpendra, R. K. Kunchala, B. S. Naidu, ACS Omega 2019, 4, 2618–2629;
- 4cH. Tan, Z. Zhao, W. B. Zhu, E. N. Coker, B. Li, M. Zheng, W. Yu, H. Fan, Z. Sun, ACS Appl. Mater. Interfaces 2014, 6, 19184–19190;
- 4dS. Wang, X. S. Xu, H. Luo, C. Cao, X. Song, J. Zhao, J. Zhang, C. Tang, RSC Adv. 2018, 8, 19279–19288;
- 4eD. Muniswamy, H. Nagabhushana, R. B. Basavaraj, G. P. Darshan, D. Prasad B, ACS Sustainable Chem. Eng. 2018, 6, 5214–5226.
- 5
- 5aS. A. Ivanov, R. Tellgren, F. Porcher, T. Ericsson, A. Mosunov, P. Beran, S. K. Korchagina, P. A. Kumar, R. Mathieu, P. Nordblad, Mater. Res. Bull. 2012, 47, 3253–3268;
- 5bS. W. Kim, H. I. Choi, M. H. Lee, J. S. Park, D. J. Kim, D. Do, M. H. Kim, T. K. Song, W. J. Kim, Ceram. Int. 2013, 39, S487–S490;
- 5cM. Panda, R. Seshadri, J. Gopalakrishnan, Chem. Mater. 2003, 15, 1554–1559;
- 5dN. Vittayakorn, B. Boonchom, J. Alloys Compd. 2011, 509, 2304–2310;
- 5eL. Chen, G. Zheng, G. Yao, P. Zhang, S. Dai, Y. Jiang, H. Li, B. Yu, H. Ni, S. Wei, ACS Omega 2020, 5, 8766–8776;
- 5fK. Sultan, M. Ikram, K. Asokan, Vacuum 2014, 99, 251–258;
- 5gA. Bassano, V. Buscaglia, M. Viviani, M. Bassoli, M. T. Buscaglia, M. Sennour, A. Thorel, P. Nanni, Solid State Ionics 2009, 180, 168–174;
- 5hS. Nieto, R. Polanco, R. Roque Malherbe, J. Phys. Chem. C 2007, 111, 2809–2818;
- 5iC. Lei, C. Wang, G. Wang, X. W. Sun, T. Li, L. Liu, J. Alloys Compd. 2013, 555, 51–55.
- 6D. Karoblis, A. Zarkov, K. Mazeika, D. Baltrunas, G. Niaura, A. Beganskiene, A. Kareiva, Ceram. Int. 2020, 46, 16459–16464.
- 7M. Li, C. Tang, T. R. Paudel, D. Song, W. Lu, K. Han, Z. Huang, S. Zeng, X. Renshaw Wang, P. Yang, Ariando, J. Chen, T. Venkatesan, E. Y. Tsymbal, C. Li, S. J. Pennycook, Adv. Mater. 2019, 31, 1901386.
- 8V. Uskoković, M. Drofenik, J. Magn. Magn. Mater. 2006, 303, 214–220.
- 9J. Xiang, Z. Hou, X. Zhang, L. Gong, Z. Wu, J. Mi, J. Alloys Compd. 2018, 737, 412–420.
- 10O. García-Zaldívar, M. C. Rodríguez-Aranda, S. Díaz-Castañón, F. Calderón-Piñar, F. J. Flores-Ruiz, J. M. Yáñez-Limón, Appl. Phys. A 2018, 124, 793.
- 11M. A. Raza, I. Z. Rahman, S. Beloshapkin, J. Alloys Compd. 2009, 485, 593–597.
- 12G. Wang, P. Wang, H. K. Luo, T. S. Hor, Chem. Asian J. 2014, 9, 1854–1859.
- 13T. Q. Ngo, A. Posadas, M. D. McDaniel, D. A. Ferrer, J. Bruley, C. Breslin, A. A. Demkov, J. G. Ekerdt, J. Cryst. Growth 2013, 363, 150–157.
- 14C. Boronat, T. Rivera, J. Garcia-Guinea, V. Correcher, Radiat. Phys. Chem. 2017, 130, 236–242.
- 15S. Mathur, H. Shen, N. Lecerf, A. Kjekshus, H. Fjellvag, G. F. Goya, Adv. Mater. 2002, 14, 1405–1409.
- 16T. C. Kaspar, P. V. Sushko, S. R. Spurgeon, M. E. Bowden, D. J. Keavney, R. B. Comes, S. Saremi, L. Martin, S. A. Chambers, Adv. Mater. Interfaces 2019, 6, 1801428.
- 17M. R. Catalano, G. Spedalotto, G. G. Condorelli, G. Malandrino, Adv. Mater. Interfaces 2017, 4, 1601025.
- 18
- 18aC. Hai, K. Inukai, Y. Takahashi, N. Izu, T. Akamatsu, T. Itoh, W. Shin, Mater. Res. Bull. 2014, 57, 103–109;
- 18bZ. Kaiwen, W. Xuehang, W. Wenwei, X. Jun, T. Siqi, L. Sen, Adv. Powder Technol. 2013, 24, 359–363;
- 18cS. Thirumalairajan, K. Girija, V. R. Mastelaro, V. Ganesh, N. Ponpandian, RSC Adv. 2014, 4, 25957–25962.
- 19X. Li, C. Tang, M. Ai, L. Dong, Z. Xu, Chem. Mater. 2010, 22, 4879–4889.
- 20F. Söderlind, M. A. Fortin, R. M. Petoral Jr, A. Klasson, T. Veres, M. Engström, K. Uvdal, P.-O. Käll, Nanotechnology 2008, 19, 085608.
- 21L. Li, X. Wang, Y. Lan, W. Gu, S. Zhang, Ind. Eng. Chem. Res. 2013, 52, 9130–9136.
- 22
- 22aM. C. Weber, M. Guennou, H. J. Zhao, J. Íñiguez, R. Vilarinho, A. Almeida, J. A. Moreira, J. Kreisel, Phys. Rev. B 2016, 94, 214103;
- 22bA. G. Gavriliuk, I. A. Troyan, R. Boehler, M. I. Eremets, I. S. Lyubutin, N. R. Serebryanaya, JETP Lett. 2003, 77, 619–624;
- 22cM. K. Singh, H. M. Jang, H. C. Gupta, R. S. Katiyar, J. Raman Spectrosc. 2008, 39, 842–848.
- 23M. V. Abrashev, A. P. Litvinchuk, M. N. Iliev, R. L. Meng, Phys. Rev. B 1999, 59, 4146–4153.
- 24
- 24aM. N. Iliev, M. V. Abrashev, H. G. Lee, V. N. Popov, Y. Y. Sun, C. Thomsen, R. L. Meng, C. W. Chu, Phys. Rev. B 1998, 57, 2872;
- 24bD. A. Mota, A. Almeida, V. H. Rodrigues, M. M. R. Costa, P. Tavares, P. Bouvier, M. Guennou, J. Kreisel, J. A. Moreira, Phy.Rev. B 2014, 90, 054104.
- 25
- 25aM. Mao, J. Xu, Y. Li, Z. R. Liu, J. Mater. Sci. 2020, 55, 3521–3537;
- 25bI. A. Abdel-Latif, L. A. Al-Hajji, M. Faisal, A. A. Ismail, Sci. Rep. 2019, 9, 13932;
- 25cP. Negi, G. Dixit, H. M. Agrawal, R. C. Srivastava, J. Supercond. Novel Magn. 2012, 26, 1611–1615.
- 26J. M. Buriak, P. V. Kamat, K. S. Schanze, ACS Appl. Mater. Interfaces 2014, 6, 11815–11816.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.