Electronic Modulation Caused by Interfacial Ni-O-M (M=Ru, Ir, Pd) Bonding for Accelerating Hydrogen Evolution Kinetics
Liming Deng
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 China
Search for more papers by this authorProf. Feng Hu
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 China
Search for more papers by this authorMingyue Ma
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 China
Search for more papers by this authorShao-Chu Huang
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorYixing Xiong
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 China
Search for more papers by this authorProf. Han-Yi Chen
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorProf. Linlin Li
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 China
Search for more papers by this authorCorresponding Author
Prof. Shengjie Peng
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 China
Search for more papers by this authorLiming Deng
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 China
Search for more papers by this authorProf. Feng Hu
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 China
Search for more papers by this authorMingyue Ma
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 China
Search for more papers by this authorShao-Chu Huang
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorYixing Xiong
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 China
Search for more papers by this authorProf. Han-Yi Chen
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorProf. Linlin Li
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 China
Search for more papers by this authorCorresponding Author
Prof. Shengjie Peng
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 China
Search for more papers by this authorAbstract
Designing definite metal-support interfacial bond is an effective strategy for optimizing the intrinsic activity of noble metals, but rather challenging. Herein, a series of quantum-sized metal nanoparticles (NPs) anchored on nickel metal–organic framework nanohybrids (M@Ni-MOF, M=Ru, Ir, Pd) are rationally developed through a spontaneous redox strategy. The metal-oxygen bonds between the NPs and Ni-MOF guarantee structural stability and sufficient exposure of the surface active sites. More importantly, such precise interfacial feature can effectively modulate the electronic structure of hybrids through the charge transfer of the formed Ni-O-M bridge and then improves the reaction kinetics. As a result, the representative Ru@Ni-MOF exhibits excellent hydrogen evolution reaction (HER) activity at all pH values, even superior to commercial Pt/C and recent noble-metal catalysts. Theoretical calculations deepen the mechanism understanding of the superior HER performance of Ru@Ni-MOF through the optimized adsorption free energies of water and hydrogen due to the interfacial-bond-induced electron redistribution.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202110374-sup-0001-misc_information.pdf2.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C.-T. Dinh, A. Jain, F. P. G. Arquer, P. Luna, J. Li, N. Wang, X. Zheng, J. Cai, B. Z. Gregory, O. Voznyy, B. Zhang, M. Liu, D. Sinton, E. J. Crumlin, E. H. Sargent, Nat. Energy 2019, 4, 107–114.
- 2M. Yang, Y. Zhang, J. Jian, L. Fang, J. Li, Z. Fang, Z. Yuan, L. Dai, X. Chen, D. Yu, Angew. Chem. Int. Ed. 2019, 58, 16217–16222; Angew. Chem. 2019, 131, 16363–16368.
- 3Y. Men, P. Li, J. Zhou, G. Cheng, S. Chen, W. Luo, ACS Catal. 2019, 9, 3744–3752.
- 4S. Jiao, X. Fu, S. Wang, Y. Zhao, Energy Environ. Sci. 2021, 14, 1722–1770.
- 5X. Wu, S. Zhou, Z. Wang, J. Liu, W. Pei, P. Yang, J. Zhao, J. Qiu, Adv. Energy Mater. 2019, 9, 1901333.
- 6Y. Gu, A. Wu, Y. Jiao, H. Zheng, X. Wang, Y. Xie, L. Wang, C. Tian, H. Fu, Angew. Chem. Int. Ed. 2021, 60, 6673–6681; Angew. Chem. 2021, 133, 6747–6755.
- 7C. Cui, R. Cheng, H. Zhang, C. Zhang, Y. Ma, C. Shi, B. Fan, H. Wang, X. Wang, Adv. Funct. Mater. 2020, 30, 2000693.
- 8L. Zhuang, Y. Jia, H. Liu, X. Wang, R. K. Hocking, H. Liu, J. Chen, L. Ge, L. Zhang, M. Li, C. L. Dong, Y. C. Huang, S. Shen, D. Yang, Z. Zhu, X. Yao, Adv. Mater. 2019, 31, 1805581.
- 9Q. Cheng, C. Hu, G. Wang, Z. Zou, H. Yang, L. Dai, J. Am. Chem. Soc. 2020, 142, 5594–5601.
- 10F. Y. Yu, Z. L. Lang, L. Y. Yin, K. Feng, Y. J. Xia, H. Q. Tan, H. T. Zhu, J. Zhong, Z. H. Kang, Y. G. Li, Nat. Commun. 2020, 11, 490.
- 11J. Xu, T. Liu, J. Li, B. Li, Y. Liu, B. Zhang, D. Xiong, I. Amorim, W. Li, L. Liu, Energy Environ. Sci. 2018, 11, 1819–1827.
- 12J. Mahmood, F. Li, S. M. Jung, M. S. Okyay, I. Ahmad, S. J. Kim, N. Park, H. Y. Jeong, J. B. Baek, Nat. Nanotechnol. 2017, 12, 441–446.
- 13Y. Yu, K. Jiang, M. Luo, Y. Zhao, J. Lan, M. Peng, F. M. F. Groot, Y. Tan, ACS Nano 2021, 15, 5333–5340.
- 14B. Yan, D. Liu, X. Feng, M. Shao, Y. Zhang, Adv. Funct. Mater. 2020, 30, 2003007.
- 15Y. Li, J. Abbott, Y. Sun, J. Sun, Y. Du, X. Han, G. Wu, P. Xu, Appl. Catal. B 2019, 258, 117952.
- 16C. Guo, Y. Jiao, Y. Zheng, J. Luo, K. Davey, S.-Z. Qiao, Chem 2019, 5, 2429–2441.
- 17K. Rui, G. Zhao, M. Lao, P. Cui, X. Zheng, X. Zheng, J. Zhu, W. Huang, S. X. Dou, W. Sun, Nano Lett. 2019, 19, 8447–8453.
- 18Y. Chen, J. Cai, P. Li, G. Zhao, G. Wang, Y. Jiang, J. Chen, S. X. Dou, H. Pan, W. Sun, Nano Lett. 2020, 20, 6807–6814.
- 19Q. Ju, R. Ma, Y. Pei, B. Guo, Z. Li, Q. Liu, T. Thomas, M. Yang, G. J. Hutchings, J. Wang, Adv. Energy Mater. 2020, 10, 2000067.
- 20Q. Wang, C. Q. Xu, W. Liu, S. F. Hung, B. H. Yang, J. Gao, W. Cai, H. M. Chen, J. Li, B. Liu, Nat. Commun. 2020, 11, 4246.
- 21D. H. Kweon, M. S. Okyay, S. J. Kim, J. P. Jeon, H. J. Noh, N. Park, J. Mahmood, J. B. Baek, Nat. Commun. 2020, 11, 1278.
- 22Y. L. Wu, X. Li, Y. S. Wei, Z. Fu, W. Wei, X. T. Wu, Q. L. Zhu, Q. Xu, Adv. Mater. 2021, 33, 2006965.
- 23Z. Liu, L. Zeng, J. Yu, L. Yang, J. Zhang, X. Zhang, F. Han, L. Zhao, X. Li, H. Liu, W. Zhou, Nano Energy 2021, 85, 105940.
- 24W. Li, Y. Liu, M. Wu, X. Feng, S. A. T. Redfern, Y. Shang, X. Yong, T. Feng, K. Wu, Z. Liu, B. Li, Z. Chen, J. S. Tse, S. Lu, B. Yang, Adv. Mater. 2018, 30, 1800676.
- 25D. Chen, W. Yang, L. Jiao, L. Li, S. H. Yu, H. L. Jiang, Adv. Mater. 2020, 32, 2000041.
- 26Z. Xia, J. Fang, X. Zhang, L. Fan, A. J. Barlow, T. Lin, S. Wang, G. G. Wallace, G. Sun, X. Wang, Appl. Catal. B 2019, 245, 389–398.
- 27B. Zhang, Y. Zheng, T. Ma, C. Yang, Y. Peng, Z. Zhou, M. Zhou, S. Li, Y. Wang, C. Cheng, Adv. Mater. 2021, 33, 2006042.
- 28C.-C. Cheng, P.-Y. Cheng, C.-L. Huang, D. Senthil Raja, Y.-J. Wu, S.-Y. Lu, Appl. Catal. B 2021, 286, 119916.
- 29Y. Sun, Z. Xue, Q. Liu, Y. Jia, Y. Li, K. Liu, Y. Lin, M. Liu, G. Li, C. Y. Su, Nat. Commun. 2021, 12, 1369.
- 30W. Cheng, X. Zhao, H. Su, F. Tang, W. Che, H. Zhang, Q. Liu, Nat. Energy 2019, 4, 115–122.
- 31Z. Xue, K. Liu, Q. Liu, Y. Li, M. Li, C. Y. Su, N. Ogiwara, H. Kobayashi, H. Kitagawa, M. Liu, G. Li, Nat. Commun. 2019, 10, 5048.
- 32Q.-Q. Chen, X. Yang, C.-C. Hou, K. Li, Y. Chen, J. Mater. Chem. A 2019, 7, 11062–11068.
- 33X. Xiao, X. Wang, X. Jiang, S. Song, D. Huang, L. Yu, Y. Zhang, S. Chen, M. Wang, Y. Shen, Z. Ren, Small Methods 2020, 4, 1900796.
- 34H. Zhang, X. Wu, C. Chen, C. Lv, H. Liu, Y. Lv, J. Guo, J. Li, D. Jia, F. Tong, Chem. Eng. J. 2021, 417, 128069.
- 35B. Ye, R. Jiang, Z. Yu, Y. Hou, J. Huang, B. Zhang, Y. Huang, Y. Zhang, R. Zhang, J. Catal. 2019, 380, 307–317.
- 36A. Mesbah, P. Rabu, R. Sibille, S. Lebegue, T. Mazet, B. Malaman, M. Francois, Inorg. Chem. 2014, 53, 872–881.
- 37H. Li, K. Liu, J. Fu, K. Chen, K. Yang, Y. Lin, B. Yang, Q. Wang, H. Pan, Z. Cai, H. Li, M. Cao, J. Hu, Y.-R. Lu, T.-S. Chan, E. Cortés, A. Fratalocchi, M. Liu, Nano Energy 2021, 82, 105767.
- 38X. Cui, S. Shyshkanov, T. N. Nguyen, A. Chidambaram, Z. Fei, K. C. Stylianou, P. J. Dyson, Angew. Chem. Int. Ed. 2020, 59, 16371–16375; Angew. Chem. 2020, 132, 16513–16517.
- 39G. Zhao, P. Li, N. Cheng, S. X. Dou, W. Sun, Adv. Mater. 2020, 32, 2000872.
- 40J. Li, W. Huang, M. Wang, S. Xi, J. Meng, K. Zhao, J. Jin, W. Xu, Z. Wang, X. Liu, Q. Chen, L. Xu, X. Liao, Y. Jiang, K. A. Owusu, B. Jiang, C. Chen, D. Fan, L. Zhou, L. Mai, ACS Energy Lett. 2019, 4, 285–292.
- 41J. Song, S. Qiu, F. Hu, Y. Ding, S. Han, L. Li, H.-Y. Chen, X. Han, C. Sun, S. Peng, Adv. Funct. Mater. 2021, 31, 2100618.
- 42L. Huang, X. Zhang, G. Gao, H. Zhang, K. Rong, J. Chen, Y. Liu, X. Zhu, W. Wu, Y. Wang, J. Wang, S. Dong, J. Am. Chem. Soc. 2021, 143, 6933–6941.
- 43M. Liu, K.-A. Min, B. Han, L. Y. S. Lee, Adv. Energy Mater. 2021, 11, 2101281.
- 44C. F. Li, J. W. Zhao, L. J. Xie, J. Q. Wu, Q. Ren, Y. Wang, G. R. Li, Angew. Chem. Int. Ed. 2021, 60, 18129–18137.
- 45Y. Hu, G. Luo, L. Wang, X. Liu, Y. Qu, Y. Zhou, F. Zhou, Z. Li, Y. Li, T. Yao, C. Xiong, B. Yang, Z. Yu, Y. Wu, Adv. Energy Mater. 2021, 11, 2002816.
- 46S. Chen, H. Huang, P. Jiang, K. Yang, J. Diao, S. Gong, S. Liu, M. Huang, H. Wang, Q. Chen, ACS Catal. 2020, 10, 1152–1160.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.