Probing the Extremes of Covalency in M−Al bonds: Lithium and Zinc Aluminyl Compounds
Dr. Matthew M. D. Roy
Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR UK
Search for more papers by this authorDr. Jamie Hicks
Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR UK
Search for more papers by this authorDr. Petra Vasko
Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR UK
Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, Jyväskylä, FI-40014 Finland
Search for more papers by this authorAndreas Heilmann
Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR UK
Search for more papers by this authorAnne-Marie Baston
Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR UK
Search for more papers by this authorCorresponding Author
Prof. Jose M. Goicoechea
Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR UK
Search for more papers by this authorCorresponding Author
Prof. Simon Aldridge
Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR UK
Search for more papers by this authorDr. Matthew M. D. Roy
Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR UK
Search for more papers by this authorDr. Jamie Hicks
Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR UK
Search for more papers by this authorDr. Petra Vasko
Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR UK
Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, Jyväskylä, FI-40014 Finland
Search for more papers by this authorAndreas Heilmann
Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR UK
Search for more papers by this authorAnne-Marie Baston
Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR UK
Search for more papers by this authorCorresponding Author
Prof. Jose M. Goicoechea
Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR UK
Search for more papers by this authorCorresponding Author
Prof. Simon Aldridge
Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR UK
Search for more papers by this authorAbstract
Synthetic routes to lithium, magnesium, and zinc aluminyl complexes are reported, allowing for the first structural characterization of an unsupported lithium–aluminium bond. Crystallographic and quantum-chemical studies are consistent with the presence of a highly polar Li−Al interaction, characterized by a low bond order and relatively little charge transfer from Al to Li. Comparison with magnesium and zinc aluminyl systems reveals changes to both the M−Al bond and the (NON)Al fragment (where NON=4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethylxanthene), consistent with a more covalent character, with the latter complex being shown to react with CO2 via a pathway that implies that the zinc centre acts as the nucleophilic partner.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202109416-sup-0001-misc_information.pdf3.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1See, for example
- 1aP. P. Power, Nature 2010, 463, 171–177;
- 1bC. Weetmann, S. Inoue, ChemCatChem 2018, 10, 4213–4228.
- 2
- 2aC. Dohmeier, C. Robl, M. Tacke, H. Schnöckel, Angew. Chem. Int. Ed. Engl. 1991, 30, 564–565; Angew. Chem. 1991, 103, 594–595. See also
- 2bS. Schulz, H. W. Roesky, H. J. Koch, G. M. Sheldrick, D. Stalke, A. Kuhn, Angew. Chem. Int. Ed. Engl. 1993, 32, 1729–1731; Angew. Chem. 1993, 105, 1828–1830.
- 3C. Cui, H. W. Roesky, H.-G. Schmidt, M. Noltemeyer, H. Hao, F. Cimpoesu, Angew. Chem. Int. Ed. 2000, 39, 4274–4276;
10.1002/1521-3773(20001201)39:23<4274::AID-ANIE4274>3.0.CO;2-K CAS PubMed Web of Science® Google ScholarAngew. Chem. 2000, 112, 4444–4446.
- 4For other recently-reported neutral AlI compounds, see for example:
- 4aP. Bag, A. Porzelt, P. J. Altmann, S. Inoue, J. Am. Chem. Soc. 2017, 139, 14384–14387;
- 4bS. K. Mellerup, Y. Cui, F. Fantuzzi, P. Schmid, J. T. Goettel, G. Bélanger-Chabot, M. Arrowsmith, I. Krummenacher, Q. Ye, V. Engel, B. Engels, H. Braunschweig, J. Am. Chem. Soc. 2019, 141, 16954–16960;
- 4cA. Hofmann, C. Pranckevicius, T. Tröster, H. Braunschweig, Angew. Chem. Int. Ed. 2019, 58, 3625–3629; Angew. Chem. 2019, 131, 3664–3668.
- 5
- 5aC. Bakewell, M. Garçon, R. Y. Kong, L. O'Hare, A. J. P. White, M. R. Crimmin, Inorg. Chem. 2020, 59, 4608–4616;
- 5bA. Dmitrienko, J. F. Britten, D. Spasyuk, G. I. Nikonov, Chem. Eur. J. 2020, 26, 206–211;
- 5cC. Bakewell, A. J. P. White, M. R. Crimmin, Chem. Sci. 2019, 10, 2452–2458;
- 5dL. L. Liu, J. Zhou, L. L. Cao, D. W. Stephan, J. Am. Chem. Soc. 2019, 141, 16971–16982;
- 5eS. Sinhababu, M. M. Siddiqui, S. K. Sarkar, A. Münch, R. Herbst-Irmer, A. George, P. Parameswaran, D. Stalke, H. W. Roesky, Chem. Eur. J. 2019, 25, 11422–11426;
- 5fA. Paparo, C. D. Smith, C. Jones, Angew. Chem. Int. Ed. 2019, 58, 11459–11463; Angew. Chem. 2019, 131, 11581–11585;
- 5gA. Koner, B. M. Gabidullin, Z. Kelemen, L. Nyulászi, G. I. Nikonov, R. Streubel, Dalton Trans. 2019, 48, 8248–8253;
- 5hC. Bakewell, B. J. Ward, A. J. P. White, M. R. Crimmin, Chem. Sci. 2018, 9, 2348–2356;
- 5iS. Brand, H. Elsen, J. Langer, W. A. Donaubauer, F. Hampel, S. Harder, Angew. Chem. Int. Ed. 2018, 57, 14169–14173; Angew. Chem. 2018, 130, 14365–14369;
- 5jR. Y. Kong, M. R. Crimmin, J. Am. Chem. Soc. 2018, 140, 13614–13617;
- 5kS. Sinhababu, S. Kundu, A. N. Paesch, R. Herbst-Irmer, D. Stalke, H. W. Roesky, Eur. J. Inorg. Chem. 2018, 2237–2240;
- 5lC. Bakewell, A. J. P. White, M. R. Crimmin, Angew. Chem. Int. Ed. 2018, 57, 6638–6642; Angew. Chem. 2018, 130, 6748–6752;
- 5mL. Tuscher, C. Helling, C. Wölper, W. Frank, A. S. Nizovtsev, S. Schulz, Chem. Eur. J. 2018, 24, 3241–3250;
- 5nT. N. Hooper, M. Garçon, A. J. P. White, M. R. Crimmin, Chem. Sci. 2018, 9, 5435–5440.
- 6Pauling electronegativities: B 2.04, Al 1.61, Ga 1.81, In 1.78, Tl 1.62; Li 0.98, Mg 1.31, Zn 1.65. J. Emsley, The Elements, 2nd ed., Oxford University Press, Oxford, 1991.
- 7Y. Segawa, M. Yamashita, K. Nozaki, Science 2006, 314, 113–115.
- 8
- 8aE. S. Schmidt, A. Jockisch, H. Schmidbaur, J. Am. Chem. Soc. 1999, 121, 9758–9759. See also
- 8bR. J. Baker, R. D. Farley, C. Jones, M. Kloth, D. M. Murphy, J. Chem. Soc. Dalton Trans. 2002, 3844–3850;
- 8cI. L. Fedushkin, A. N. Lukoyanov, G. K. Fukin, S. Y. Ketkov, M. Hummert, H. Schumann, Chem. Eur. J. 2008, 14, 8465–8468.
- 9J. Hicks, P. Vasko, J. M. Goicoechea, S. Aldridge, Nature 2018, 557, 92–95.
- 10
- 10aJ. J. Schwamm, M. D. Anker, M. Lein, M. P. Coles, Angew. Chem. Int. Ed. 2019, 58, 1489–1493; Angew. Chem. 2019, 131, 1503–1507;
- 10bS. Kurumada, S. Takamori, M. Yamashita, Nat. Chem. 2020, 12, 36–39;
- 10cK. Koshino, R. Kinjo, J. Am. Chem. Soc. 2020, 142, 9057–9062;
- 10dR. J. Schwamm, M. P. Coles, M. S. Hill, M. F. Mahon, C. L. McMullin, N. A. Rajabi, A. S. S. Wilson, Angew. Chem. Int. Ed. 2020, 59, 3928–3932; Angew. Chem. 2020, 132, 3956–3960;
- 10eS. Grams, J. Eyselein, J. Langer, C. Färber, S. Harder, Angew. Chem. Int. Ed. 2020, 59, 15982–15986; Angew. Chem. 2020, 132, 16116–16120.
- 11For the first structurally authenticated indyl system, see: R. J. Schwamm, M. D. Anker, M. Lein, M. P. Coles, C. M. Fitchett, Angew. Chem. Int. Ed. 2018, 57, 5885–5887; Angew. Chem. 2018, 130, 5987–5989.
- 12For a recent review of aluminyl chemistry, see J. Hicks, P. Vasko, J. M. Goicoechea, S. Aldridge, Angew. Chem. Int. Ed. 2021, 60, 1702–1713; Angew. Chem. 2021, 133, 1726–1737.
- 13J. Hicks, P. Vasko, J. M. Goicoechea, S. Aldridge, J. Am. Chem. Soc. 2019, 141, 11000–11003.
- 14
- 14aM. Anker, M. P. Coles, Angew. Chem. Int. Ed. 2019, 58, 18261–18265; Angew. Chem. 2019, 131, 18429–18433. See also:
- 14bJ. Hicks, A. Heilmann, P. Vasko, J. M. Goicoechea, S. Aldridge, Angew. Chem. Int. Ed. 2019, 58, 17265–17268; Angew. Chem. 2019, 131, 17425–17428.
- 15J. Hicks, A. Mansikkamäki, P. Vasko, J. M. Goicoechea, S. Aldridge, Nat. Chem. 2019, 11, 237–241.
- 16K. Sugita, M. Yamashita, Chem. Eur. J. 2020, 26, 4520–4523.
- 17H. Y. Liu, R. J. Schwamm, M. S. Hill, M. F. Mahon, C. F. McMullin, N. A. Rajabi, Angew. Chem. Int. Ed. 2021, 60, 14390–14393; Angew. Chem. 2021, 133, 14511–14514.
- 18
- 18aS. P. Green, C. Jones, A. Stasch, Science 2007, 318, 1754–1757;
- 18bC. Jones, Nat. Rev. Chem. 2017, 1, 0059. For a related use of this MgI system to reductively assemble M-Mg bonds, see for example:
- 18cJ. Hicks, C. E. Hoyer, B. Moubaraki, G. Li Manni, E. Carter, D. M. Murphy, K. S. Murray, L. Gagliardi, C. Jones, J. Am. Chem. Soc. 2014, 136, 5283–5286;
- 18dJ. Hicks, E. J. Underhill, C. Kefalidis, L. Maron, C. Jones, Angew. Chem. Int. Ed. 2015, 54, 10000–10004; Angew. Chem. 2015, 127, 10138–10142.
- 19The corresponding reaction of 1 with NaI leads to no apparent conversion, with the unreacted potassium aluminyl being recovered unchanged from the reaction mixture.
- 20B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragán, S. Alvarez, Dalton Trans. 2008, 2832–2838.
- 21T. Ohsato, Y. Okuno, S. Ishida, T. Iwamoto, K.-H. Lee, Z. Lin, M. Yamashita, K. Nozaki, Angew. Chem. Int. Ed. 2016, 55, 11426–11430; Angew. Chem. 2016, 128, 11598–11602.
- 22A. V. Protchenko, P. Vasko, M. A. Fuentes, J. Hicks, D. Vidovic, S. Aldridge, Angew. Chem. Int. Ed. 2021, 60, 2064–2068; Angew. Chem. 2021, 133, 2092–2096.
- 23S. Schulz, T. Eisenmann, D. Schuchmann, M. Bolte, M. Kirchner, R. Boese, J. Spielmann, S. Harder, Z. Anorg. Allg. Chem. 2009, 64, 1397–1400.
- 24T. Agou, T. Wasano, P. Jin, S. Nagase, N. Tokitoh, Angew. Chem. Int. Ed. 2013, 52, 10031–10034; Angew. Chem. 2013, 125, 10215–10218.
- 25J. Weßing, C. Göbel, B. Weber, C. Gemel, R. A. Fischer, Inorg. Chem. 2017, 56, 3517–3525.
- 26see ref. [5h].
- 27see ref. [5f].
- 28S. Brand, H. Elsen, J. Langer, S. Grams, S. Harder, Angew. Chem. Int. Ed. 2019, 58, 15496–15503; Angew. Chem. 2019, 131, 15642–15649.
- 29The Al-Al distance measured for 3 is longer than would be predicted on the basis of this trend (ca. 5 % longer than the sum of the covalent radii). We ascribe this to the very large steric profile enforced by the pair of NON supporting ligands, a finding consistent with 1H NMR studies of 3 which (uniquely among the compounds reported here) features restricted rotation about the M−Al bond at room temperature on the NMR timescale.
- 30
- 30aA. Sundermann, M. Reiher, W. Schoeller, Eur. J. Inorg. Chem. 1998, 305–310. In the case of related boryl systems the partial positive charge at boron is calculated to be much lower, in line with the higher electronegativity of B vs. Al:
10.1002/(SICI)1099-0682(199803)1998:3<305::AID-EJIC305>3.0.CO;2-0 CAS Web of Science® Google Scholar
- 30bY. Segawa, Y. Suzuki, M. Yamashita, K. Nozaki, J. Am. Chem. Soc. 2008, 130, 16069–16079.
- 31G. Anantharaman, K. Elango, Organometallics 2007, 26, 1089–1092.
- 32Deposition Numbers 2095877, 2095878, and 2095879 contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.