An Efficient Turing-Type Ag2Se-CoSe2 Multi-Interfacial Oxygen-Evolving Electrocatalyst**
Dr. Xiao-Long Zhang
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Peng-Peng Yang
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Ya-Rong Zheng
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorDr. Yu Duan
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorDr. Shao-Jin Hu
Division of Theoretical and Computational Sciences, Hefei National Laboratory for Physical Sciences at Microscale, CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorDr. Tao Ma
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorDr. Fei-Yue Gao
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorDr. Zhuang-Zhuang Niu
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorZhi-Zheng Wu
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorShuai Qin
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorLi-Ping Chi
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorXingxing Yu
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorDr. Rui Wu
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorDr. Chao Gu
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorCheng-Ming Wang
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 P. R. China
Search for more papers by this authorDr. Xu-Sheng Zheng
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029 China
Search for more papers by this authorProf. Xiao Zheng
Division of Theoretical and Computational Sciences, Hefei National Laboratory for Physical Sciences at Microscale, CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorProf. Jun-Fa Zhu
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029 China
Search for more papers by this authorCorresponding Author
Prof. Min-Rui Gao
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorDr. Xiao-Long Zhang
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Peng-Peng Yang
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Ya-Rong Zheng
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorDr. Yu Duan
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorDr. Shao-Jin Hu
Division of Theoretical and Computational Sciences, Hefei National Laboratory for Physical Sciences at Microscale, CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorDr. Tao Ma
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorDr. Fei-Yue Gao
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorDr. Zhuang-Zhuang Niu
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorZhi-Zheng Wu
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorShuai Qin
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorLi-Ping Chi
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorXingxing Yu
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorDr. Rui Wu
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorDr. Chao Gu
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorCheng-Ming Wang
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 P. R. China
Search for more papers by this authorDr. Xu-Sheng Zheng
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029 China
Search for more papers by this authorProf. Xiao Zheng
Division of Theoretical and Computational Sciences, Hefei National Laboratory for Physical Sciences at Microscale, CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorProf. Jun-Fa Zhu
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029 China
Search for more papers by this authorCorresponding Author
Prof. Min-Rui Gao
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorA previous version of this manuscript has been deposited on a preprint server (https://doi.org/10.21203/rs.3.rs-39890/v1).
Abstract
Although the Turing structures, or stationary reaction-diffusion patterns, have received increasing attention in biology and chemistry, making such unusual patterns on inorganic solids is fundamentally challenging. We report a simple cation exchange approach to produce Turing-type Ag2Se on CoSe2 nanobelts relied on diffusion-driven instability. The resultant Turing-type Ag2Se-CoSe2 material is highly effective to catalyze the oxygen evolution reaction (OER) in alkaline electrolytes with an 84.5 % anodic energy efficiency. Electrochemical measurements show that the intrinsic OER activity correlates linearly with the length of Ag2Se-CoSe2 interfaces, determining that such Turing-type interfaces are more active sites for OER. Combing X-ray absorption and computational simulations, we ascribe the excellent OER performance to the optimized adsorption energies for critical oxygen-containing intermediates at the unconventional interfaces.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202017016-sup-0001-misc_information.pdf17.7 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. M. Turing, Philos. Trans. R. Soc. London Ser. B 1952, 237, 37–72.
- 2
- 2aH. Meinhardt, Models of biological pattern formation, Academic Press, New York, 1982;
- 2bJ. D. Murray, Mathematical Biology, Springer, 1989.
10.1007/978-3-662-08539-4 Google Scholar
- 3G. Nieolis, I. Prigogine, Self-organization in nonequilibrium systems, Wiley, New York, 1977.
- 4
- 4aP. De Kepper, I. R. Epstein, K. Kustin, M. Orban, J. Phys. Chem. 1982, 86, 170–171;
- 4bV. V. Castets, E. Dulos, J. Boissonade, P. De Kepper, Phys. Rev. Lett. 1990, 64, 2953–2956;
- 4cQ. Ouyang, H. L. Swinney, Nature 1991, 352, 610–612.
- 5
- 5aV. K. Vanag, I. R. Epstein, Phys. Rev. Lett. 2001, 87, 228301;
- 5bI. R. Epstein, B. Xu, Nat. Nanotechnol. 2016, 11, 312–319.
- 6
- 6aT. Bánsági, V. K. Vanag, I. R. Epstein, Science 2011, 331, 1309–1312;
- 6bT. Liu, X. Dou, Y. Xu, Y. Chen, Y. Han, Research 2020, 2020, 4370817.
- 7
- 7aS. Sick, S. Reinker, J. Timmer, T. Schlake, Science 2006, 314, 1447–1450;
- 7bA. D. Economou, A. Ohazama, T. Porntaveetus, P. T. Sharpe, S. Kondo, M. A. Basson, A. Gritli-Linde, M. T. Cobourne, J. B. Green, Nat. Genet. 2012, 44, 348.
- 8Z. Tan, S. Chen, X. Peng, L. Zhang, C. Gao, Science 2018, 360, 518–521.
- 9
- 9aS. Kondo, T. Miura, Science 2010, 329, 1616–1620;
- 9bJ. Horváth, I. Szalai, P. D. Kepper, Science 2009, 324, 772–775.
- 10A. Gierer, H. Meinhardt, Kybernetik 1972, 12, 30–39.
- 11
- 11aY. Iida, T. Yamaguchi, T. Tanaka, J. Nucl. Sci. Technol. 2011, 48, 1170–1183;
- 11bH. S. Harned, Proc. Natl. Acad. Sci. USA 1954, 40, 551.
- 12M.-R. Gao, W.-T. Yao, H.-B. Yao, S.-H. Yu, J. Am. Chem. Soc. 2009, 131, 7486–7487.
- 13
- 13aL. De Trizio, L. Manna, Chem. Rev. 2016, 116, 10852–10887;
- 13bD. Zhang, A. B. Wong, Y. Yu, S. Brittman, J. Sun, A. Fu, B. Beberwyck, A. P. Alivisatos, P. Yang, J. Am. Chem. Soc. 2014, 136, 17430–17433.
- 14A. A. Zagorodni, Ion exchange materials: properties and applications, Elsevier, Amsterdam, 2006.
- 15G. D. Moon, S. Ko, Y. Min, J. Zeng, Y. Xia, U. Jeong, Nano Today 2011, 6, 186–203.
- 16R. D. Robinson, B. Sadtler, D. O. Demchenko, C. K. Erdonmez, L. W. Wang, A. P. Alivisatos, Science 2007, 317, 355–358.
- 17J. Burgess, Metal ions in solution, Ellis Horwood, Sussex, 1978.
- 18
- 18aY. Yu-hua, Z. Chao-ping, J. Clin. Rehabil. Tissue Eng. Res. 2010, 14, 5498–5504;
- 18bH. L. Zhu, X. J. Wang, X. Y. Liu, D. Q. Wang, Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2007, 33, 1417–1424.
- 19W. Yang, C. Wang, V. Arrighi, J. Mater. Sci. Mater. Electron. 2018, 29, 2771–2783.
- 20
- 20aJ. Firth, H. Tyrrell, J. Chem. Soc. 1962, 2042–2047;
- 20bR. Stokes, J. Am. Chem. Soc. 1951, 73, 3527–3528.
- 21C. L. Hildreth, J. Am. Chem. Soc. 1951, 73, 3292–3293.
- 22D. H. Son, S. M. Hughes, Y. Yin, A. P. Alivisatos, Science 2004, 306, 1009–1012.
- 23J. Wang, W. Fan, J. Yang, Z. Da, X. Yang, K. Chen, H. Yu, X. Cheng, Chem. Mater. 2014, 26, 5647–5653.
- 24P. Boolchand, W. Bresser, Nature 2001, 410, 1070–1073.
- 25A. J. Bard, L. R. Faulkner, Electrochemical methods: fundamentals and applications, Wiley, Hoboken, 2001.
- 26
- 26aM.-R. Gao, X. Cao, Q. Gao, Y.-F. Xu, Y.-R. Zheng, J. Jiang, S.-H. Yu, ACS Nano 2014, 8, 3970–3978;
- 26bM. R. Gao, Y. F. Xu, J. Jiang, Y. R. Zheng, S. H. Yu, J. Am. Chem. Soc. 2012, 134, 2930–2933;
- 26cY. Liu, H. Cheng, M. Lyu, S. Fan, Q. Liu, W. Zhang, Y. Zhi, C. Wang, C. Xiao, S. Wei, B. Ye, Y. Xie, J. Am. Chem. Soc. 2014, 136, 15670–15675;
- 26dY. Dou, C. T. He, L. Zhang, H. Yin, M. Al-Mamun, J. Ma, H. Zhao, Nat. Commun. 2020, 11, 1664.
- 27L. Niu, Q. Li, F. Wei, X. Chen, H. Wang, J. Electroanal. Chem. 2003, 544, 121–128.
- 28
- 28aH. S. Oh, H. N. Nong, T. Reier, A. Bergmann, M. Gliech, J. Ferreira de Araujo, E. Willinger, R. Schlogl, D. Teschner, P. Strasser, J. Am. Chem. Soc. 2016, 138, 12552–12563;
- 28bM. Huynh, D. K. Bediako, D. G. Nocera, J. Am. Chem. Soc. 2014, 136, 6002–6010.
- 29H. Billetter, U. Ruschewitz, Z. Anorg. Allg. Chem. 2008, 634, 241–246.
- 30S. Kashida, N. Watanabe, T. Hasegawa, H. Iida, M. Mori, S. Savrasov, Solid State Ionics 2003, 158, 167–175.
- 31J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, Y. Shao-Horn, Science 2011, 334, 1383–1385.
- 32S. Song, J. Zhou, X. Su, Y. Wang, J. Li, L. Zhang, G. Xiao, C. Guan, R. Liu, S. Chen, H.-J. Lin, S. Zhang, J.-Q. Wang, Energy Environ. Sci. 2018, 11, 2945–2953.
- 33
- 33aK. K. Banger, Y. Yamashita, K. Mori, R. L. Peterson, T. Leedham, J. Rickard, H. Sirringhaus, Nat. Mater. 2011, 10, 45–50;
- 33bN. McIntyre, M. Cook, Anal. Chem. 1975, 47, 2208–2213;
- 33cB. Zhang, X. Zheng, O. Voznyy, R. Comin, M. Bajdich, M. Garcia-Melchor, L. Han, J. Xu, M. Liu, L. Zheng, F. P. Garcia de Arquer, C. T. Dinh, F. Fan, M. Yuan, E. Yassitepe, N. Chen, T. Regier, P. Liu, Y. Li, P. De Luna, A. Janmohamed, H. L. Xin, H. Yang, A. Vojvodic, E. H. Sargent, Science 2016, 352, 333–337.
- 34P. Khanna, N. Singh, S. Charan, K. Patil, Mater. Lett. 2006, 60, 2080–2085.
- 35H. Rupp, U. Weser, Bioinorg. Chem. 1975, 5, 21–32.
- 36X. Li, H. Liu, Z. Chen, Q. Wu, Z. Yu, M. Yang, X. Wang, Z. Cheng, Z. Fu, Y. Lu, Nat. Commun. 2019, 10, 1409.
- 37M. Bajdich, M. García-Mota, A. Vojvodic, J. K. Nørskov, A. T. Bell, J. Am. Chem. Soc. 2013, 135, 13521–13530.
- 38J. Cai, Y. Song, Y. Zang, S. Niu, Y. Wu, Y. Xie, X. Zheng, Y. Liu, Y. Lin, X. Liu, Sci. Adv. 2020, 6, eaaw8113.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.