Locally Ordered Graphitized Carbon Cathodes for High-Capacity Dual-Ion Batteries
Kai Yang
Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Qirong Liu
Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Yongping Zheng
Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
These authors contributed equally to this work.
Search for more papers by this authorHang Yin
Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Prof. Shanqing Zhang
Center for Clean Environment and Energy School of Environment and Science, Griffith University, Brisbane, Queensland, 4222 Australia
Search for more papers by this authorCorresponding Author
Prof. Yongbing Tang
Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123 China
Key Laboratory of Advanced Materials Processing & Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002 China
School of Chemical Sciences, Ministry of Education, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorKai Yang
Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Qirong Liu
Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Yongping Zheng
Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
These authors contributed equally to this work.
Search for more papers by this authorHang Yin
Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Prof. Shanqing Zhang
Center for Clean Environment and Energy School of Environment and Science, Griffith University, Brisbane, Queensland, 4222 Australia
Search for more papers by this authorCorresponding Author
Prof. Yongbing Tang
Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123 China
Key Laboratory of Advanced Materials Processing & Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002 China
School of Chemical Sciences, Ministry of Education, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorAbstract
Dual-ion batteries (DIBs) inherently suffer from limited energy density. Proposed here is a strategy to effectively tackle this issue by employing locally ordered graphitized carbon (LOGC) cathodes. Quantum mechanical modeling suggests that strong anion–anion repulsions and severe expansion at the deep-charging stage raise the anion intercalation voltage, therefore only part of the theoretical anion storage sites in graphite is accessible. The LOGC interconnected with disordered carbon is predicted to weaken the interlaminar van der Waals interactions, while disordered carbons not only interconnect the dispersed nanographite but also partially buffer severe anion–anion repulsion and offer extra capacitive anion storage sites. As a proof-of-concept, ketjen black (KB) with LOGC was used as a model cathode for a potassium-based DIB (KDIB). The KDIB delivers an unprecedentedly high specific capacity of 232 mAh g−1 at 50 mA g−1, a good rate capability of 110 mAh g−1 at 2000 mA g−1, and excellent cycling stability of 1000 cycles without obvious capacity fading.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202016233-sup-0001-misc_information.pdf1.1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. Chen, B. Yang, H. Li, P. Ma, J. Lang, X. Yan, J. Mater. Chem. A 2019, 7, 9247–9252;
- 1bX. Zhao, Y. Tang, C. Ni, J. Wang, A. Star, Y. Xu, ACS Appl. Energy Mater. 2018, 1, 1703–1707;
- 1cG. Wang, X. Xiong, D. Xie, Z. Lin, J. Zheng, F. Zheng, Y. Li, Y. Liu, C. Yang, M. Liu, J. Mater. Chem. A 2018, 6, 24317–24323.
- 2
- 2aN. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Chem. Rev. 2014, 114, 11636–11682;
- 2bW. Wang, Y. Gang, Z. Hu, Z. Yan, W. Li, Y. Li, Q. F. Gu, Z. Wang, S. L. Chou, H. K. Liu, S. X. Dou, Nat. Commun. 2020, 11, 980;
- 2cY. Wang, L. Wang, H. Zhu, J. Chu, Y. Fang, L. Wu, L. Huang, Y. Ren, C.-J. Sun, Q. Liu, X. Ai, H. Yang, Y. Cao, Adv. Funct. Mater. 2020, 30, 1910327;
- 2dD. Yang, W. Chen, X. Zhang, L. Mi, C. Liu, L. Chen, X. Guan, Y. Cao, C. Shen, J. Mater. Chem. A 2019, 7, 19709–19718.
- 3
- 3aK. Beltrop, S. Beuker, A. Heckmann, M. Winter, T. Placke, Energy Environ. Sci. 2017, 10, 2090–2094;
- 3bW. Zhang, W. K. Pang, V. Sencadas, Z. Guo, Joule 2018, 2, 1534–1547;
- 3cQ. Pan, D. Gong, Y. B. Tang, Energy Storage Mater. 2020, 31, 328–343;
- 3dB. Ji, W. Yao, Y. Zheng, P. Kidkhunthod, X. Zhou, S. Tunmee, S. Sattayaporn, H.-M. Cheng, H. He, Y. B. Tang, Nat. Commun. 2020, 11, 1225;
- 3eH. He, W. Yao, S. Tunmee, X. Zhou, B. Ji, N. Wu, T. Song, P. Kidkhunthod, Y. B. Tang, J. Mater. Chem. A 2020, 8, 9128–9136.
- 4
- 4aM. L. Aubrey, J. R. Long, J. Am. Chem. Soc. 2015, 137, 13594–13602;
- 4bT. Placke, A. Heckmann, R. Schmuch, P. Meister, K. Beltrop, M. Winter, Joule 2018, 2, 2528–2550;
- 4cE. Zhang, B. Wang, J. Wang, H. Ding, S. Zhang, H. Duan, X. Yu, B. Lu, Chem. Eng. J. 2020, 389, 124407.
- 5
- 5aW. Wang, J. Zhou, Z. Wang, L. Zhao, P. Li, Y. Yang, C. Yang, H. Huang, S. Guo, Adv. Energy Mater. 2018, 8, 1701648;
- 5bT. Masese, K. Yoshii, Y. Yamaguchi, T. Okumura, Z. D. Huang, M. Kato, K. Kubota, J. Furutani, Y. Orikasa, H. Senoh, H. Sakaebe, M. Shikano, Nat. Commun. 2018, 9, 3823;
- 5cL. G. Xue, Y. T. Li, H. C. Gao, W. D. Zhou, X. J. Lu, W. Kaveevivitchai, A. Manthiram, J. B. Goodenough, J. Am. Chem. Soc. 2017, 139, 2164–2167;
- 5dG. Li, B. Huang, Z. Pan, X. Su, Z. Shao, L. An, Energy Environ. Sci. 2019, 12, 2030–2053;
- 5eB. Ji, H. He, W. Yao, Y. B. Tang, Adv. Mater. 2020, 32, 2005501;
- 5fY. Lan, W. Yao, X. He, T. Song, Y. Tang, Angew. Chem. Int. Ed. 2020, 59, 9255; Angew. Chem. 2020, 132, 9342.
- 6
- 6aY. J. Liu, X. Hu, G. B. Zhong, J. X. Chen, H. B. Zhan, Z. H. Wen, J. Mater. Chem. A 2019, 7, 24271–24280;
- 6bL. Fan, K. R. Lin, J. Wang, R. F. Ma, B. G. Lu, Adv. Mater. 2018, 30, 1800804;
- 6cM. Wang, C. L. Jiang, S. Q. Zhang, X. H. Song, Y. B. Tang, H. M. Cheng, Nat. Chem. 2018, 10, 667–672;
- 6dQ. Liu, H. Wang, C. Jiang, Y. Tang, Energy Storage Mater. 2019, 23, 566–586;
- 6eY. Feng, S. Chen, J. Wang, B. Lu, J. Energy Chem. 2020, 43, 129–138.
- 7
- 7aX. Zhou, Q. Liu, C. Jiang, B. Ji, X. Ji, Y. Tang, H.-M. Cheng, Angew. Chem. Int. Ed. 2020, 59, 3802–3832; Angew. Chem. 2020, 132, 3830–3861;
- 7bX. Ding, F. Zhang, B. Ji, Y. Liu, J. Li, C.-S. Lee, Y. Tang, ACS Appl. Mater. Interfaces 2018, 10, 42294–42300;
- 7cL. Fan, Q. Liu, Z. Xu, B. G. Lu, ACS Energy Lett. 2017, 2, 1614–1620;
- 7dX. Jiang, L. Luo, F. Zhong, X. Feng, W. Chen, X. Ai, H. Yang, Y. Cao, ChemElectroChem 2019, 6, 2615.
- 8
- 8aG. Zhang, X. Ou, C. Cui, J. Ma, J. Yang, Y. B. Tang, Adv. Funct. Mater. 2019, 29, 1806722;
- 8bX. Qi, K. Huang, X. Wu, W. Zhao, H. Wang, Q. Zhuang, Z. Ju, Carbon 2018, 131, 79–85;
- 8cN. Wu, W. Yao, X. Song, G. Zhang, B. Chen, J. Yang, Y. B. Tang, Adv. Energy Mater. 2019, 9, 1803865;
- 8dH. Lei, J. Tu, Z. Yu, S. Jiao, ACS Appl. Mater. Interfaces 2017, 9, 36702–36707.
- 9
- 9aK. V. Kraychyk, P. Bhauriyal, L. Piveteau, C. P. Guntlin, B. Pathak, M. V. Kovalenko, Nat. Commun. 2018, 9, 4469;
- 9bC. Yang, J. Chen, X. Ji, T. P. Pollard, X. Lü, C.-J. Sun, S. Hou, Q. Liu, C. Liu, T. Qing, Y. Wang, O. Borodin, Y. Ren, K. Xu, C. Wang, Nature 2019, 569, 245–250.
- 10
- 10aN. Li, F. Zhang, Y. B. Tang, J. Mater. Chem. A 2018, 6, 17889–17895;
- 10bS. Wu, F. Zhang, Y. B. Tang, Adv. Sci. 2018, 5, 1701082;
- 10cX. Lei, Y. P. Zheng, F. Zhang, Y. Wang, Y. B. Tang, Energy Storage Mater. 2020, 30, 34–41.
- 11T. Ishihara, M. Koga, H. Matsumoto, M. Yoshio, Electrochem. Solid-State Lett. 2007, 10, A74.
- 12
- 12aH. Chen, F. Guo, Y. Liu, T. Huang, B. Zheng, N. Ananth, Z. Xu, W. Gao, C. Gao, Adv. Mater. 2017, 29, 1605958;
- 12bS. C. Jung, Y.-J. Kang, D.-J. Yoo, J. W. Choi, Y.-K. Han, J. Phys. Chem. C 2016, 120, 13384–13389;
- 12cL. Zhang, L. Chen, H. Luo, X. Zhou, Z. Liu, Adv. Energy Mater. 2017, 7, 1700034;
- 12dH. Chen, H. Xu, S. Wang, T. Huang, J. Xi, S. Cai, F. Guo, Z. Xu, W. Gao, C. Gao, Sci. Adv. 2017, 3, eaao7233;
- 12eQ. Zhang, L. Wang, J. Wang, C. Xing, J. Ge, L. Fan, Z. Liu, X. Lu, M. Wu, X. Yu, H. Zhang, B. Lu, Energy Storage Mater. 2018, 15, 361–367.
- 13M. Zhang, M. Shoaib, H. Fei, T. Wang, J. Zhong, L. Fan, L. Wang, H. Luo, S. Tan, Y. Wang, J. Zhu, J. Hu, B. Lu, Adv. Energy Mater. 2019, 9, 1901663.
- 14
- 14aQ. Liu, G. Zhang, N. Chen, X. Feng, C. Wang, J. Wang, X. Jin, L. Qu, Adv. Funct. Mater. 2020, 30, 2002086;
- 14bS. Wang, S. Jiao, D. Tian, H. S. Chen, H. Jiao, J. Tu, Y. Liu, D. N. Fang, Adv. Mater. 2017, 29, 1606349.
- 15Z. Zhang, M. Li, Y. Gao, Z. Wei, M. Zhang, C. Wang, Y. Zeng, B. Zou, G. Chen, F. Du, Adv. Funct. Mater. 2018, 28, 1802684.
- 16B. Ji, F. Zhang, X. Song, Y. Tang, Adv. Mater. 2017, 29, 1700519.
- 17
- 17aK. S. Mohamed, D. K. Padma, Spectrochim. Acta Part A 1985, 41A, 725–728;
- 17bC. Han, R. Shi, D. Zhou, H. Li, L. Xu, T. Zhang, J. Li, F. Kang, G. Wang, B. Li, ACS Appl. Mater. Interfaces 2019, 11, 15646–15655;
- 17cJ. Syzdek, M. Marcinek, R. Kostecki, J. Power Sources 2014, 245, 739–744;
- 17dC. Li, J. Xue, A. Huang, J. Ma, F. Qing, A. Zhou, Z. Wang, Y. Wang, J. Li, Electrochim. Acta 2019, 297, 850–855.
- 18I. A. Kinloch, J. Suhr, J. Lou, R. J. Young, P. M. Ajayan, Science 2018, 362, 547–553.
- 19
- 19aP. Lu, Y. Sun, H. Xiang, X. Liang, Y. Yu, Adv. Energy Mater. 2018, 8, 1702434;
- 19bY. Xu, C. L. Zhang, M. Zhou, Q. Fu, C. X. Zhao, M. H. Wu, Y. Lei, Nat. Commun. 2018, 9, 1720.
- 20
- 20aG. H. Chen, F. Zhang, Z. M. Zhou, J. R. Li, Y. B. Tang, Adv. Energy Mater. 2018, 8, 1801219;
- 20bX. Han, G. Xu, Z. Zhang, X. Du, P. Han, X. Zhou, G. Cui, L. Chen, Adv. Energy Mater. 2019, 9, 1804022;
- 20cC. L. Jiang, Y. Fang, J. H. Lang, Y. B. Tang, Adv. Energy Mater. 2017, 7, 1700913;
- 20dX. Tong, F. Zhang, G. Chen, X. Liu, L. Gu, Y. Tang, Adv. Energy Mater. 2018, 8, 1701967;
- 20eZ. Zhou, N. Li, Y. Yang, H. Chen, S. Jiao, W.-L. Song, D. Fang, Adv. Energy Mater. 2018, 8, 1801439;
- 20fS. Zhang, M. Wang, Z. Zhou, Y. Tang, Adv. Funct. Mater. 2017, 27, 1703035;
- 20gC. L. Jiang, L. Xiang, S. J. Miao, L. Shi, D. H. Xie, J. X. Yan, Z. J. Zheng, X. M. Zhang, Y. B. Tang, Adv. Mater. 2020, 32, 1908470;
- 20hP. Qin, M. Wang, N. Li, H. Zhu, X. Ding, Y. Tang, Adv. Mater. 2017, 29, 1606805;
- 20iX. Tong, F. Zhang, B. Ji, M. Sheng, Y. Tang, Adv. Mater. 2016, 28, 9979–9985;
- 20jG. Wang, M. Yu, J. Wang, D. Li, D. Tan, M. Löffler, X. Zhuang, K. Müllen, X. Feng, Adv. Mater. 2018, 30, 1800533;
- 20kF. Zhang, B. Ji, X. Tong, M. Sheng, X. Zhang, C.-S. Lee, Y. Tang, Adv. Mater. Interfaces 2016, 3, 1600605;
- 20lL. Xiang, X. Ou, X. Wang, Z. Zhou, X. Li, Y. Tang, Angew. Chem. Int. Ed. 2020, 59, 17924;
- 20mC. Y. Chan, P.-K. Lee, Z. Xu, D. Y. W. Yu, Electrochim. Acta 2018, 263, 34–39;
- 20nA. Heckmann, J. Thienenkamp, K. Beltrop, M. Winter, G. Brunklaus, T. Placke, Electrochim. Acta 2018, 260, 514–525;
- 20oJ. A. Read, A. V. Cresce, M. H. Ervin, K. Xu, Energy Environ. Sci. 2014, 7, 617–620;
- 20pX. Han, H. Zhang, T. Liu, X. Du, G. Xu, P. Han, X. Zhou, G. Cui, J. Mater. Chem. A 2020, 8, 1451–1456;
- 20qK. Shin, F. Zhang, X. Ou, N. Wu, C.-S. Lee, Y. Tang, J. Mater. Chem. A 2019, 7, 10930–10935;
- 20rS. Wang, X. Xiao, C. Fu, J. Tu, Y. Tan, S. Jiao, J. Mater. Chem. A 2018, 6, 4313–4323;
- 20sP. Han, X. Han, J. Yao, L. Yue, J. Zhao, X. Zhou, G. Cui, J. Power Sources 2018, 393, 145–151;
- 20tT. Liu, X. Han, Z. Zhang, Z. Chen, P. Wang, P. Han, N. Ding, G. Cui, J. Power Sources 2019, 437, 226942.
- 21
- 21aM. Sheng, F. Zhang, B. Ji, X. Tong, Y. Tang, Adv. Energy Mater. 2017, 7, 1601963;
- 21bZ. Hu, Q. Liu, K. Zhang, L. Zhou, L. Li, M. Chen, Z. Tao, Y.-M. Kang, L. Mai, S.-L. Chou, J. Chen, S.-X. Dou, ACS Appl. Mater. Interfaces 2018, 10, 35978–35983;
- 21cL. Fan, Q. Liu, S. Chen, Z. Xu, B. Lu, Adv. Energy Mater. 2017, 7, 1602778;
- 21dH. Zhu, F. Zhang, J. Li, Y. Tang, Small 2018, 14, 1703951;
- 21eJ. Fan, Y. Fang, Q. Xiao, R. Huang, L. Li, W. Yuan, Energy Technol. 2019, 7, 1800978;
- 21fH.-J. Liao, Y.-M. Chen, Y.-T. Kao, J.-Y. An, Y.-H. Lai, D.-Y. Wang, J. Phys. Chem. C 2017, 121, 24463–24469;
- 21gD. Xie, M. Zhang, Y. Wu, L. Xiang, Y. Tang, Adv. Funct. Mater. 2020, 30, 1906770;
- 21hR. Ma, L. Fan, S. Chen, Z. Wei, Y. Yang, H. Yang, Y. Qin, B. Lu, ACS Appl. Mater. Interfaces 2018, 10, 15751–15759;
- 21iS. Mu, Q. Liu, P. Kidkhunthod, X. Zhou, W. Wang, Y. Tang, Natl. Sci. Rev. 2020, https://doi.org/10.1093/nsr/nwaa178;
- 21jX. Yao, Y. Ke, W. Ren, X. Wang, F. Xiong, W. Yang, M. Qin, Q. Li, L. Mai, Adv. Energy Mater. 2019, 9, 1803260;
- 21kX. Wang, C. Zheng, L. Qi, H. Wang, Global Challenges 2017, 1, 1700055.
- 22
- 22aB. Ji, F. Zhang, N. Wu, Y. Tang, Adv. Energy Mater. 2017, 7, 1700920;
- 22bJ. Zhu, Y. Li, B. Yang, L. Liu, J. Li, X. Yan, D. He, Small 2018, 14, 1801836;
- 22cL. Fan, Q. Liu, S. Chen, K. Lin, Z. Xu, B. Lu, Small 2017, 13, 1701011;
- 22dA. Yu, Q. Pan, M. Zhang, D. Xie, Y. Tang, Adv. Funct. Mater. 2020, 30, 2001440.
- 23
- 23aT. Deng, X. L. Fan, C. Luo, J. Chen, L. Chen, S. Hou, N. Eidson, X. Q. Zhou, C. S. Wang, Nano Lett. 2018, 18, 1522–1529;
- 23bC. L. Liu, S. H. Luo, H. B. Huang, Z. Y. Wang, A. M. Hao, Y. C. Zhai, Z. W. Wang, Electrochem. Commun. 2017, 82, 150–154;
- 23cC. Vaalma, G. A. Giffin, D. Buchholz, S. Passerini, J. Electrochem. Soc. 2016, 163, A1295–A1299;
- 23dX. P. Wang, X. M. Xu, C. J. Niu, J. S. Meng, M. Huang, X. Liu, Z. Liu, L. Q. Mai, Nano Lett. 2017, 17, 544–550.
- 24
- 24aC. L. Zhang, Y. Xu, M. Zhou, L. Y. Liang, H. S. Dong, M. H. Wu, Y. Yang, Y. Lei, Adv. Funct. Mater. 2017, 27, 1604307;
- 24bA. Eftekhari, J. Power Sources 2004, 126, 221–228;
- 24cX. F. Bie, K. Kubota, T. Hosaka, K. Chihara, S. Komaba, J. Mater. Chem. A 2017, 5, 4325–4330;
- 24dX. Jiang, T. R. Zhang, L. Q. Yang, G. C. Li, J. Y. Lee, ChemElectroChem 2017, 4, 2237–2242.
- 25
- 25aV. A. Nikitina, S. M. Kuzovchikov, S. S. Fedotov, N. R. Khasanova, A. M. Abakumov, E. V. Antipov, Electrochim. Acta 2017, 258, 814–824;
- 25bT. Hosaka, T. Shimamura, K. Kubota, S. Komaba, Chem. Rec. 2019, 19, 735–745;
- 25cN. Recham, G. Rousse, M. T. Sougrati, J. N. Chotard, C. Frayret, S. Mariyappan, B. C. Melot, J. C. Jumas, J. M. Tarascon, Chem. Mater. 2012, 24, 4363–4370;
- 25dK. Chihara, A. Katogi, K. Kubota, S. Komaba, Chem. Commun. 2017, 53, 5208–5211.
- 26
- 26aY. N. Chen, W. Luo, M. Carter, L. H. Zhou, J. Q. Dai, K. Fu, S. Lacey, T. Li, J. Y. Wan, X. G. Han, Y. P. Bao, L. B. Hu, Nano Energy 2015, 18, 205–211;
- 26bZ. L. Jian, Y. L. Liang, I. A. Rodriguez-Perez, Y. Yao, X. L. Ji, Electrochem. Commun. 2016, 71, 5–8;
- 26cJ. Zhao, J. X. Yang, P. F. Sun, Y. H. Xu, Electrochem. Commun. 2018, 86, 34–37.
- 27
- 27aR. J. C. Dubey, J. Nussli, L. Piveteau, K. V. Kravchyk, M. D. Rossell, M. Campanini, R. Erni, M. V. Kovalenko, N. P. Stadie, ACS Appl. Mater. Interfaces 2019, 11, 17686–17696;
- 27bJ. H. Lang, J. R. Li, X. W. Ou, F. Zhang, K. S. Shin, Y. B. Tang, ACS Appl. Mater. Interfaces 2020, 12, 2424–2431;
- 27cH. C. Gao, L. G. Xue, S. Xin, J. B. Goodenough, Angew. Chem. Int. Ed. 2018, 57, 5449–5453; Angew. Chem. 2018, 130, 5547–5551.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.