Boosting CO2 Electrochemical Reduction with Atomically Precise Surface Modification on Gold Nanoclusters
Site Li
Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213 USA
National Energy Technology Laboratory (NETL), United States Department of Energy, Pittsburgh, PA, USA
These authors contributed equally to this work.
Search for more papers by this authorAnantha Venkataraman Nagarajan
Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, 15261 USA
These authors contributed equally to this work.
Search for more papers by this authorDr. Dominic R. Alfonso
National Energy Technology Laboratory (NETL), United States Department of Energy, Pittsburgh, PA, USA
Search for more papers by this authorMingkang Sun
Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213 USA
Search for more papers by this authorCorresponding Author
Dr. Douglas R. Kauffman
National Energy Technology Laboratory (NETL), United States Department of Energy, Pittsburgh, PA, USA
Search for more papers by this authorCorresponding Author
Prof. Giannis Mpourmpakis
Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, 15261 USA
Search for more papers by this authorCorresponding Author
Prof. Rongchao Jin
Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213 USA
Search for more papers by this authorSite Li
Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213 USA
National Energy Technology Laboratory (NETL), United States Department of Energy, Pittsburgh, PA, USA
These authors contributed equally to this work.
Search for more papers by this authorAnantha Venkataraman Nagarajan
Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, 15261 USA
These authors contributed equally to this work.
Search for more papers by this authorDr. Dominic R. Alfonso
National Energy Technology Laboratory (NETL), United States Department of Energy, Pittsburgh, PA, USA
Search for more papers by this authorMingkang Sun
Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213 USA
Search for more papers by this authorCorresponding Author
Dr. Douglas R. Kauffman
National Energy Technology Laboratory (NETL), United States Department of Energy, Pittsburgh, PA, USA
Search for more papers by this authorCorresponding Author
Prof. Giannis Mpourmpakis
Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, 15261 USA
Search for more papers by this authorCorresponding Author
Prof. Rongchao Jin
Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213 USA
Search for more papers by this authorAbstract
Thiolate-protected gold nanoclusters (NCs) are promising catalytic materials for the electrochemical CO2 reduction reaction (CO2RR). In this work an atomic level modification of a Au23 NC is made by substituting two surface Au atoms with two Cd atoms, and it enhances the CO2RR selectivity to 90–95 % at the applied potential between −0.5 to −0.9 V, which is doubled compared to that of the undoped Au23. Additionally, the Cd-doped Au19Cd2 exhibits the highest CO2RR activity (2200 mA mg−1 at −1.0 V vs. RHE) among the reported NCs. This synergetic effect between Au and Cd is remarkable. Density-functional theory calculations reveal that the exposure of a sulfur active site upon partial ligand removal provides an energetically feasible CO2RR pathway. The thermodynamic energy barrier for CO formation is 0.74 eV lower on Au19Cd2 than on Au23. These results reveal that Cd doping can boost the CO2RR performance of Au NCs by modifying the surface geometry and electronic structure, which further changes the intermediate binding energy. This work offers insights into the surface doping mechanism of the CO2RR and bimetallic synergism.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202016129-sup-0001-misc_information.pdf1.7 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aX. Zhao, L. Du, B. You, Y. Sun, Catal. Sci. Technol. 2020, 10, 2711–2720;
- 1bC. Costentin, M. Robert, J.-M. Savéant, Chem. Soc. Rev. 2013, 42, 2423–2436;
- 1cJ. Qiao, Y. Liu, F. Hong, J. Zhang, Chem. Soc. Rev. 2014, 43, 631–675.
- 2
- 2aW. Zhu, Y.-J. Zhang, H. Zhang, H. Lv, Q. Li, R. Michalsky, A. A. Peterson, S. Sun, J. Am. Chem. Soc. 2014, 136, 16132–16135;
- 2bY. Chen, C. W. Li, M. W. Kanan, J. Am. Chem. Soc. 2012, 134, 19969–19972;
- 2cW. Zhu, R. Michalsky, O. Metin, H. Lv, S. Guo, C. J. Wright, X. Sun, A. A. Peterson, S. Sun, J. Am. Chem. Soc. 2013, 135, 16833–16836.
- 3
- 3aJ. Rosen, G. S. Hutchings, Q. Lu, S. Rivera, Y. Zhou, D. G. Vlachos, F. Jiao, ACS Catal. 2015, 5, 4293–4299;
- 3bZ. Wang, T. Li, Q. Wang, A. Guan, N. Cao, A. M. Al-Enizi, L. Zhang, L. Qian, G. Zheng, J. Power Sources 2020, 476, 228705.
- 4
- 4aR. Reske, H. Mistry, F. Behafarid, B. Roldan Cuenya, P. Strasser, J. Am. Chem. Soc. 2014, 136, 6978–6986;
- 4bM. G. Kibria, C. T. Dinh, A. Seifitokaldani, P. De Luna, T. Burdyny, R. Quintero-Bermudez, M. B. Ross, O. S. Bushuyev, F. P. García de Arquer, P. Yang, Adv. Mater. 2018, 30, 1804867;
- 4cZ. Gu, H. Shen, L. Shang, X. Lv, L. Qian, G. Zheng, Small Methods 2018, 2, 1800121.
- 5
- 5aX. Yuan, L. Zhang, L. Li, H. Dong, S. Chen, W. Zhu, C. Hu, W. Deng, Z.-J. Zhao, J. Gong, J. Am. Chem. Soc. 2019, 141, 4791–4794;
- 5bS. Zhao, R. Jin, R. Jin, ACS Energy Lett. 2018, 3, 452–462.
- 6H. Mistry, R. Reske, Z. Zeng, Z.-J. Zhao, J. Greeley, P. Strasser, B. Roldan Cuenya, J. Am. Chem. Soc. 2014, 136, 16473–16476.
- 7
- 7aS. Zhao, N. Austin, M. Li, Y. Song, S. D. House, S. Bernhard, J. C. Yang, G. Mpourmpakis, R. Jin, ACS Catal. 2018, 8, 4996–5001;
- 7bH.-E. Lee, K. D. Yang, S. M. Yoon, H.-Y. Ahn, Y. Y. Lee, H. Chang, D. H. Jeong, Y.-S. Lee, M. Y. Kim, K. T. Nam, ACS Nano 2015, 9, 8384–8393.
- 8
- 8aD. Kim, J. Resasco, Y. Yu, A. M. Asiri, P. Yang, Nat. Commun. 2014, 5, 4695;
- 8bD. Kim, C. Xie, N. Becknell, Y. Yu, M. Karamad, K. Chan, E. J. Crumlin, J. K. Nørskov, P. Yang, J. Am. Chem. Soc. 2017, 139, 8329–8336.
- 9J. He, N. J. Johnson, A. Huang, C. P. Berlinguette, ChemSusChem 2018, 11, 48–57.
- 10
- 10aY. Lu, W. Chen, Chem. Soc. Rev. 2012, 41, 3594–3623;
- 10bR. Jin, Nanoscale 2010, 2, 343–362;
- 10cM. Zhou, T. Higaki, G. Hu, M. Y. Sfeir, Y. Chen, D.-e. Jiang, R. Jin, Science 2019, 364, 279–282;
- 10dR. Jin, C. Zeng, M. Zhou, Y. Chen, Chem. Rev. 2016, 116, 10346–10413;
- 10eZ. Tang, W. Wu, K. Wang, Catalysts 2018, 8, 65.
- 11
- 11aC. Zeng, Y. Chen, K. Kirschbaum, K. J. Lambright, R. Jin, Science 2016, 354, 1580–1584;
- 11bM. Zhu, C. M. Aikens, F. J. Hollander, G. C. Schatz, R. Jin, J. Am. Chem. Soc. 2008, 130, 5883–5885.
- 12
- 12aR. Ouyang, D.-e. Jiang, ACS Catal. 2015, 5, 6624–6629;
- 12bT. Higaki, Y. Li, S. Zhao, Q. Li, S. Li, X. S. Du, S. Yang, J. Chai, R. Jin, Angew. Chem. Int. Ed. 2019, 58, 8291–8302; Angew. Chem. 2019, 131, 8377–8388;
- 12cK. Kwak, W. Choi, Q. Tang, M. Kim, Y. Lee, D.-e. Jiang, D. Lee, Nat. Commun. 2017, 8, 14723.
- 13T. Higaki, C. Liu, D. J. Morris, G. He, T. Y. Luo, M. Y. Sfeir, P. Zhang, N. L. Rosi, R. Jin, Angew. Chem. Int. Ed. 2019, 58, 18798–18802; Angew. Chem. 2019, 131, 18974–18978.
- 14Y. Song, Y. Li, H. Li, F. Ke, J. Xiang, C. Zhou, P. Li, M. Zhu, R. Jin, Nat. Commun. 2020, 11, 478.
- 15
- 15aS. Hossain, Y. Niihori, L. V. Nair, B. Kumar, W. Kurashige, Y. Negishi, Acc. Chem. Res. 2018, 51, 3114–3124;
- 15bB. Kumar, T. Kawawaki, N. Shimizu, Y. Imai, D. Suzuki, S. Hossain, L. V. Nair, Y. Negishi, Nanoscale 2020, 12, 9969–9979.
- 16H. Qian, E. Barry, Y. Zhu, R. Jin, Acta Phys. Chim. Sin. 2011, 27, 513–519.
- 17Q. Li, K. J. Lambright, M. G. Taylor, K. Kirschbaum, T.-Y. Luo, J. Zhao, G. Mpourmpakis, S. Mokashi-Punekar, N. L. Rosi, R. Jin, J. Am. Chem. Soc. 2017, 139, 17779–17782.
- 18S. Zhuang, D. Chen, L. Liao, Y. Zhao, N. Xia, W. Zhang, C. Wang, J. Yang, Z. Wu, Angew. Chem. Int. Ed. 2020, 59, 3073–3077; Angew. Chem. 2020, 132, 3097–3101.
- 19H. Liao, A. Fisher, Z. Xu, Small 2015, 11, 3221–3246.
- 20D. R. Kauffman, D. Alfonso, C. Matranga, H. Qian, R. Jin, J. Am. Chem. Soc. 2012, 134, 10237–10243.
- 21A. Das, T. Li, K. Nobusada, C. Zeng, N. L. Rosi, R. Jin, J. Am. Chem. Soc. 2013, 135, 18264–18267.
- 22R. Juarez-Mosqueda, G. Mpourmpakis, Phys. Chem. Chem. Phys. 2019, 21, 22272–22282.
- 23J. A. Trindell, J. Clausmeyer, R. M. Crooks, J. Am. Chem. Soc. 2017, 139, 16161–16167.
- 24
- 24aS. Huang, H. Huang, W. Li, D. Kim, S. Lu, X. Li, E. Holmström, S. K. Kwon, L. J. N. c. Vitos, Nat. Commun. 2018, 9, 2381;
- 24bD. R. Kauffman, J. Thakkar, R. Siva, C. Matranga, P. R. Ohodnicki, C. Zeng, R. Jin, ACS Appl. Mater. Interfaces 2015, 7, 15626–15632.
- 25
- 25aJ. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865;
- 25bJ. VandeVondele, J. Hutter, J. Chem. Phys. 2007, 127, 114105;
- 25cJ. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, J. Hutter, Comput. Phys. Commun. 2005, 167, 103–128;
- 25dS. Goedecker, M. Teter, J. Hutter, Phys. Rev. B 1996, 54, 1703.
- 26
- 26aN. Austin, S. Zhao, J. R. McKone, R. Jin, G. Mpourmpakis, Catal. Sci. Technol. 2018, 8, 3795–3805;
- 26bD. R. Alfonso, D. Kauffman, C. Matranga, J. Chem. Phys. 2016, 144, 184705;
- 26cA. V. Nagarajan, R. Juarez-Mosqueda, M. J. Cowan, R. Jin, D. R. Kauffman, G. Mpourmpakis, SN Appl. Sci. 2020, 2, 680.
- 27L. Wei, H. Li, J. Chen, Z. Yuan, Q. Huang, X. Liao, G. Henkelman, Y. Chen, ACS Catal. 2020, 10, 1444–1453.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.