Ultra-Low Molecular Weight Photoswitchable Hydrogelators
Fayaz Ali Larik
School of Chemistry, The University of New South Wales, Sydney, NSW, 2052 Australia
The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW, 2052 Australia
Search for more papers by this authorLucy L. Fillbrook
School of Chemistry, The University of New South Wales, Sydney, NSW, 2052 Australia
Search for more papers by this authorDr. Sandra S. Nurttila
School of Chemistry, The University of New South Wales, Sydney, NSW, 2052 Australia
The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW, 2052 Australia
Search for more papers by this authorDr. Adam D. Martin
Dementia Research Centre, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109 Australia
Search for more papers by this authorDr. Rhiannon P. Kuchel
Electron Microscopy Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, 2052 Australia
Search for more papers by this authorKarrar Al Taief
School of Chemistry, The University of New South Wales, Sydney, NSW, 2052 Australia
The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW, 2052 Australia
Search for more papers by this authorDr. Mohan Bhadbhade
Solid State & Elemental Analysis Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, 2052 Australia
Search for more papers by this authorCorresponding Author
Assoc. Prof. Jonathon E. Beves
School of Chemistry, The University of New South Wales, Sydney, NSW, 2052 Australia
Search for more papers by this authorCorresponding Author
Prof. Pall Thordarson
School of Chemistry, The University of New South Wales, Sydney, NSW, 2052 Australia
The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW, 2052 Australia
Search for more papers by this authorFayaz Ali Larik
School of Chemistry, The University of New South Wales, Sydney, NSW, 2052 Australia
The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW, 2052 Australia
Search for more papers by this authorLucy L. Fillbrook
School of Chemistry, The University of New South Wales, Sydney, NSW, 2052 Australia
Search for more papers by this authorDr. Sandra S. Nurttila
School of Chemistry, The University of New South Wales, Sydney, NSW, 2052 Australia
The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW, 2052 Australia
Search for more papers by this authorDr. Adam D. Martin
Dementia Research Centre, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109 Australia
Search for more papers by this authorDr. Rhiannon P. Kuchel
Electron Microscopy Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, 2052 Australia
Search for more papers by this authorKarrar Al Taief
School of Chemistry, The University of New South Wales, Sydney, NSW, 2052 Australia
The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW, 2052 Australia
Search for more papers by this authorDr. Mohan Bhadbhade
Solid State & Elemental Analysis Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, 2052 Australia
Search for more papers by this authorCorresponding Author
Assoc. Prof. Jonathon E. Beves
School of Chemistry, The University of New South Wales, Sydney, NSW, 2052 Australia
Search for more papers by this authorCorresponding Author
Prof. Pall Thordarson
School of Chemistry, The University of New South Wales, Sydney, NSW, 2052 Australia
The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW, 2052 Australia
Search for more papers by this authorAbstract
Two photoswitchable arylazopyrozoles form hydrogels at a concentration of 1.2 % (w/v). With a molecular weight of 258.28 g mol−1, these are the lowest known molecular weight hydrogelators that respond reversibly to light. Photoswitching of the E- to the Z-form by exposure to 365 nm light results in a macroscopic gel→sol transition; nearly an order of magnitude reduction in the measured elastic and loss moduli. In the case of the meta-arylazopyrozole, cryogenic transmission electron microscopy suggests that the 29±7 nm wide sheets in the E-gel state narrow to 13±2 nm upon photoswitching to the predominantly Z-solution state. Photoswitching for meta-arylazopyrozole is reversible through cycles of 365 nm and 520 nm excitation with little fatigue. The release of a rhodamine B dye encapsulated in gels formed by the arylazopyrozoles is accelerated more than 20-fold upon photoswitching with 365 nm light, demonstrating these materials are suitable for light-controlled cargo release.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202015703-sup-0001-misc_information.pdf12.8 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1K. Yonekura, S. Maki, D. G. Morgan, D. J. DeRosier, F. Vonderviszt, K. Imada, K. Namba, Science 2000, 290, 2148–2152.
- 2E. J. Cohen, J. L. Ferreira, M. S. Ladinsky, M. Beeby, K. T. Hughes, Science 2017, 356, 197–200.
- 3D. Dattler, G. Fuks, J. Heiser, E. Moulin, A. Perrot, X. Yao, N. Giuseppone, Chem. Rev. 2020, 120, 310–433.
- 4
- 4aX. Du, J. Zhou, J. Shi, B. Xu, Chem. Rev. 2015, 115, 13165–13307;
- 4bE. R. Draper, D. J. Adams, Chem 2017, 3, 390–410;
- 4cS. Mondal, S. Das, A. K. Nandi, Soft Matter 2020, 16, 1404–1454.
- 5
- 5aM. D. Segarra-Maset, V. J. Nebot, J. F. Miravet, B. Escuder, Chem. Soc. Rev. 2013, 42, 7086–7098;
- 5bJ. Hoque, N. Sangaj, S. Varghese, Macromol. Biosci. 2019, 19, 1800259.
- 6J. Hu, S. Liu, Acc. Chem. Res. 2014, 47, 2084–2095.
- 7M. Ikeda, T. Tanida, T. Yoshii, K. Kurotani, S. Onogi, K. Urayama, I. Hamachi, Nat. Chem. 2014, 6, 511–518.
- 8S. Wei, W. Lu, X. Le, C. Ma, H. Lin, B. Wu, J. Zhang, P. Theato, T. Chen, Angew. Chem. Int. Ed. 2019, 58, 16243–16251; Angew. Chem. 2019, 131, 16389–16397.
- 9X. Q. Dou, C. L. Feng, Adv. Mater. 2017, 29, 1604062.
- 10
- 10aV. Balzani, A. Credi, M. Venturi, Chem. Soc. Rev. 2009, 38, 1542–1550;
- 10bD. Habault, H. Zhang, Y. Zhao, Chem. Soc. Rev. 2013, 42, 7244–7256;
- 10cE. R. Draper, D. J. Adams, Chem. Commun. 2016, 52, 8196–8206;
- 10dX. Li, J. Fei, Y. Xu, D. Li, T. Yuan, G. Li, C. Wang, J. A. Li, Angew. Chem. Int. Ed. 2018, 57, 1903–1907; Angew. Chem. 2018, 130, 1921–1925;
- 10eZ. L. Pianowski, Chem. Eur. J. 2019, 25, 5128–5144.
- 11Z. Qiu, H. Yu, J. Li, Y. Wang, Y. Zhang, Chem. Commun. 2009, 3342–3344.
- 12
- 12aY.-L. Zhao, J. F. Stoddart, Langmuir 2009, 25, 8442–8446;
- 12bS. Tamesue, Y. Takashima, H. Yamaguchi, S. Shinkai, A. Harada, Angew. Chem. Int. Ed. 2010, 49, 7461–7464; Angew. Chem. 2010, 122, 7623–7626;
- 12cG. Davidson-Rozenfeld, L. Stricker, J. Simke, M. Fadeev, M. Vázquez-González, B. J. Ravoo, I. Willner, Polym. Chem. 2019, 10, 4106–4115;
- 12dA. Tabet, R. A. Forster, C. C. Parkins, G. Wu, O. A. Scherman, Polym. Chem. 2019, 10, 467–472.
- 13J. T. van Herpt, M. C. Stuart, W. R. Browne, B. L. Feringa, Chem. Eur. J. 2014, 20, 3077–3083.
- 14
- 14aJ. E. Stumpel, B. Ziółkowski, L. Florea, D. Diamond, D. J. Broer, A. P. Schenning, ACS Appl. Mater. Interfaces 2014, 6, 7268–7274;
- 14bC. Li, A. Iscen, L. C. Palmer, G. C. Schatz, S. I. Stupp, J. Am. Chem. Soc. 2020, 142, 8447–8453.
- 15
- 15aK. Peng, I. Tomatsu, A. Kros, Chem. Commun. 2010, 46, 4094–4096;
- 15bA. A. Beharry, G. A. Woolley, Chem. Soc. Rev. 2011, 40, 4422–4437;
- 15cY. Huang, Z. Qiu, Y. Xu, J. Shi, H. Lin, Y. Zhang, Org. Biomol. Chem. 2011, 9, 2149–2155;
- 15dT. M. Doran, D. M. Ryan, B. L. Nilsson, Polym. Chem. 2014, 5, 241–248;
- 15eA. M. Rosales, K. M. Mabry, E. M. Nehls, K. S. Anseth, Biomacromolecules 2015, 16, 798–806;
- 15fZ. L. Pianowski, J. Karcher, K. Schneider, Chem. Commun. 2016, 52, 3143–3146;
- 15gF. Xie, L. Qin, M. A. Liu, Chem. Commun. 2016, 52, 930–933;
- 15hI.-N. Lee, O. Dobre, D. Richards, C. Ballestrem, J. M. Curran, J. A. Hunt, S. M. Richardson, J. Swift, L. S. Wong, ACS Appl. Mater. Interfaces 2018, 10, 7765–7776;
- 15iA. M. Rosales, C. B. Rodell, M. H. Chen, M. G. Morrow, K. S. Anseth, J. A. Burdick, Bioconjugate Chem. 2018, 29, 905–913;
- 15jM. E. Roth-Konforti, M. Comune, M. Halperin-Sternfeld, I. Grigoriants, D. Shabat, L. Adler-Abramovich, Macromol. Rapid Commun. 2018, 39, 1800588;
- 15kC. Wang, K. Hashimoto, R. Tamate, H. Kokubo, M. Watanabe, Angew. Chem. Int. Ed. 2018, 57, 227–230; Angew. Chem. 2018, 130, 233–236;
- 15lL. Li, J. M. Scheiger, P. A. Levkin, Adv. Mater. 2019, 31, 1807333;
- 15mM. Salzano de Luna, V. Marturano, M. Manganelli, C. Santillo, V. Ambrogi, G. Filippone, P. Cerruti, J. Colloid Interface Sci. 2020, 568, 16–24;
- 15nN. Higashi, R. Yoshikawa, T. Koga, RSC Adv. 2020, 10, 15947–15954.
- 16F. Tong, S. Chen, Z. Li, M. Liu, R. O. Al-Kaysi, U. Mohideen, Y. Yin, C. J. Bardeen, Angew. Chem. Int. Ed. 2019, 58, 15429–15434; Angew. Chem. 2019, 131, 15575–15580.
- 17
- 17aJ. V. Accardo, J. A. Kalow, Chem. Sci. 2018, 9, 5987–5993;
- 17bJ. Karcher, Z. L. Pianowski, Chem. Eur. J. 2018, 24, 11605–11610;
- 17cF. Zhao, A. Bonasera, U. Nöchel, M. Behl, D. Bléger, Macromol. Rapid Commun. 2018, 39, 1700527;
- 17dX. Tong, Y. Qiu, X. Zhao, B. Xiong, R. Liao, H. Peng, Y. Liao, X. Xie, Soft Matter 2019, 15, 6411–6417.
- 18C. W. Chu, L. Stricker, T. M. Kirse, M. Hayduk, B. J. Ravoo, Chem. Eur. J. 2019, 25, 6131–6140.
- 19
- 19aC. E. Weston, R. D. Richardson, P. R. Haycock, A. J. P. White, M. J. Fuchter, J. Am. Chem. Soc. 2014, 136, 11878–11881;
- 19bJ. Calbo, C. E. Weston, A. J. P. White, H. S. Rzepa, J. Contreras-García, M. J. Fuchter, J. Am. Chem. Soc. 2017, 139, 1261–1274;
- 19cS. Crespi, N. A. Simeth, B. König, Nat. Rev. Chem. 2019, 3, 133–146;
- 19dR. S. Gibson, J. Calbo, M. J. Fuchter, ChemPhotoChem 2019, 3, 372–377;
- 19eM. A. Gerkman, R. S. Gibson, J. Calbo, Y. Shi, M. J. Fuchter, G. G. Han, J. Am. Chem. Soc. 2020, 142, 8688–8695.
- 20C.-W. Chu, B. J. Ravoo, Chem. Commun. 2017, 53, 12450–12453.
- 21
- 21aD. K. Kumar, D. A. Jose, P. Dastidar, A. Das, Langmuir 2004, 20, 10413–10418;
- 21bJ. Shi, Y. Gao, Z. Yang, B. Xu, Beilstein J. Org. Chem. 2011, 7, 167–172;
- 21cA. J. Kleinsmann, B. J. Nachtsheim, Chem. Commun. 2013, 49, 7818–7820.
- 22M. A. Spackman, D. Jayatilaka, CrystEngComm 2009, 11, 19–32.
- 23A. D. Martin, J. Britton, T. L. Easun, A. J. Blake, W. Lewis, M. Schröder, Cryst. Growth Des. 2015, 15, 1697–1706.
- 24D. J. Adams, M. F. Butler, W. J. Frith, M. Kirkland, L. Mullen, P. Sanderson, Soft Matter 2009, 5, 1856–1862.
- 25S. R. Raghavan, B. H. Cipriano in Molecular gels (Eds.: R. G. Weiss, P. Terech), Springer, Dordrecht, 2006, pp. 241–252.
10.1007/1-4020-3689-2_9 Google Scholar
- 26S. Panja, C. Patterson, D. J. Adams, Macromol. Rapid Commun. 2019, 40, 1900251.
- 27A. D. Martin, J. P. Wojciechowski, A. B. Robinson, C. Heu, C. J. Garvey, J. Ratcliffe, L. J. Waddington, J. Gardiner, P. Thordarson, Sci. Rep. 2017, 7, 43947.
- 28K. Park, J. Controlled Release 2014, 190, 3–8.
- 29T. M. McPhillips, S. E. McPhillips, H. J. Chiu, A. E. Cohen, A. M. Deacon, P. J. Ellis, E. Garman, A. Gonzalez, N. K. Sauter, R. P. Phizackerley, S. M. Soltis, P. Kuhn, J. Synchrotron Rad. 2002, 9, 401–406.
- 30Deposition Numbers 1977104 (for 2) and 1977105 (for 3) contain(s) the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.