Electrochemical Polymerization Provides a Function-Integrated System for Water Oxidation
Hikaru Iwami
Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871 Japan
Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science (IMS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787 Japan
Department of Structural Molecular Sciences, SOKENDAI (The Graduate University for Advanced Studies), Shonan village, Hayama, Kanagawa, 240-0193 Japan
Search for more papers by this authorDr. Masaya Okamura
Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science (IMS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Mio Kondo
Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871 Japan
JST, PRESTO, 4-1-8 Honcho, Kawaguchi, 332-0012 Japan
Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, 565-0871 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Shigeyuki Masaoka
Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871 Japan
Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, 565-0871 Japan
Search for more papers by this authorHikaru Iwami
Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871 Japan
Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science (IMS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787 Japan
Department of Structural Molecular Sciences, SOKENDAI (The Graduate University for Advanced Studies), Shonan village, Hayama, Kanagawa, 240-0193 Japan
Search for more papers by this authorDr. Masaya Okamura
Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science (IMS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Mio Kondo
Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871 Japan
JST, PRESTO, 4-1-8 Honcho, Kawaguchi, 332-0012 Japan
Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, 565-0871 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Shigeyuki Masaoka
Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871 Japan
Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, 565-0871 Japan
Search for more papers by this authorAbstract
Water oxidation is a key reaction in natural and artificial photosynthesis. In nature, the reaction is efficiently catalyzed by a metal-complex-based catalyst surrounded by hole-transporting amino acid residues. However, in artificial systems, there is no example of a water oxidation system that has a catalytic center surrounded by hole transporters. Herein, we present a facile strategy to integrate catalytic centers and hole transporters in one system. Electrochemical polymerization of a metal-complex-based precursor afforded a polymer-based material (Poly-1). Poly-1 exhibited excellent hole-transporting ability and catalyzed water oxidation with high performance. It was also revealed that the catalytic activity was almost completely suppressed in the absence of the hole-transporting moieties. The present study provides a novel strategy for constructing efficient molecule-based systems for water oxidation.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202015174-sup-0001-misc_information.pdf2.6 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aN. S. Lewis, D. G. Nocera, Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735;
- 1bP. V. Kamat, J. Phys. Chem. C 2007, 111, 2834–2860;
- 1cT. R. Cook, D. K. Dogutan, S. Y. Reece, Y. Surendranath, T. S. Teets, D. G. Nocera, Chem. Rev. 2010, 110, 6474–6502.
- 2
- 2aX. Liu, F. Wang, Coord. Chem. Rev. 2012, 256, 1115–1136;
- 2bA. Singh, L. Spiccia, Coord. Chem. Rev. 2013, 257, 2607–2622;
- 2cM. D. Kärkäs, O. Verho, E. V. Johnston, B. Åkermark, Chem. Rev. 2014, 114, 11863–12001;
- 2dJ. D. Blakemore, R. H. Crabtree, G. W. Brudvig, Chem. Rev. 2015, 115, 12974–13005;
- 2eM. Kondo, S. Masaoka, Chem. Lett. 2016, 45, 1220–1231;
- 2fB. Zhang, L. Sun, Chem. Soc. Rev. 2019, 48, 2216–2264;
- 2gS. Ye, C. Ding, M. Liu, A. Wang, Q. Huang, C. Li, Adv. Mater. 2019, 31, 1902069;
- 2hZ. N. Zahran, Y. Tsubonouchi, E. A. Mohamed, M. Yagi, ChemSusChem 2019, 12, 1775–1793.
- 3
- 3aJ. P. McEvoy, G. W. Brudvig, Chem. Rev. 2006, 106, 4455–4483;
- 3bT. J. Meyer, M. H. V. Huynh, H. H. Thorp, Angew. Chem. Int. Ed. 2007, 46, 5284–5304; Angew. Chem. 2007, 119, 5378–5399.
- 4J. Barber, Chem. Soc. Rev. 2009, 38, 185–196.
- 5
- 5aS. W. Gersten, G. J. Samuels, T. J. Meyer, J. Am. Chem. Soc. 1982, 104, 4029–4030;
- 5bY. Naruta, M. Sasayama, T. Sasaki, Angew. Chem. Int. Ed. Engl. 1994, 33, 1839–1841; Angew. Chem. 1994, 106, 1964–1965;
- 5cJ. Limburg, J. S. Vrettos, L. M. Liable-Sands, A. L. Rhingold, R. H. Crabtree, G. W. Brudvig, Science 1999, 283, 1524–1527;
- 5dJ. L. Fillol, Z. Codolà, I. Garcia-Bosch, L. Gómez, J. J. Pla, M. Costas, Nat. Chem. 2011, 3, 807–813;
- 5eL. Duan, F. Bozoglian, S. Mandal, B. Stewart, T. Privalov, A. Llobet, L. Sun, Nat. Chem. 2012, 4, 418–423;
- 5fS. M. Barnett, K. I. Goldberg, J. M. Mayer, Nat. Chem. 2012, 4, 498–502;
- 5gD. Wang, J. T. Groves, Proc. Natl. Acad. Sci. USA 2013, 110, 15579–15584.
- 6
- 6aM. Okamura, M. Kondo, R. Kuga, Y. Kurashige, T. Yanai, S. Hayami, V. K. K. Praneeth, M. Yoshida, K. Yoneda, S. Kawata, S. Masaoka, Nature 2016, 530, 465–468;
- 6bV. K. K. Praneeth, M. Kondo, P. M. Woi, M. Okamura, S. Masaoka, ChemPlusChem 2016, 81, 1123–1128;
- 6cV. K. K. Praneeth, M. Kondo, M. Okamura, T. Akai, H. Izu, S. Masaoka, Chem. Sci. 2019, 10, 4628–4639;
- 6dM. Kondo, S. Masaoka, Acc. Chem. Res. 2020, 53, 2140–2151.
- 7
- 7aJ. Mola, E. Mas-Marza, X. Sala, I. Romero, M. Rodríguez, C. Viñas, T. Parella, A. Llobet, Angew. Chem. Int. Ed. 2008, 47, 5830–5832; Angew. Chem. 2008, 120, 5914–5916;
- 7bD. L. Ashford, A. M. Lapides, A. K. Vannucci, K. Hanson, D. A. Torelli, D. P. Harrison, J. L. Templeton, T. J. Meyer, J. Am. Chem. Soc. 2014, 136, 6578–6581;
- 7cD. L. Ashford, B. D. Sherman, R. A. Binstead, J. L. Templeton, T. J. Meyer, Angew. Chem. Int. Ed. 2015, 54, 4778–4781; Angew. Chem. 2015, 127, 4860–4863;
- 7dL. Wang, K. Fan, Q. Daniel, L. Duan, F. Li, B. Philippe, H. Rensmo, H. Chen, J. Sun, L. Sun, Chem. Commun. 2015, 51, 7883–7886.
- 8
- 8aN. S. McCool, D. M. Robinson, J. E. Sheats, G. C. Dismukes, J. Am. Chem. Soc. 2011, 133, 11446–11449;
- 8bJ. Li, Y. Jiang, Q. Zhang, X. Zhao, N. Li, H. Tong, X. Yang, L. Xia, RSC Adv. 2017, 7, 4102–4107;
- 8cY. Wang, F. Li, X. Zhou, F. Yu, J. Du, L. Bai, L. Sun, Angew. Chem. Int. Ed. 2017, 56, 6911–6915; Angew. Chem. 2017, 129, 7015–7019.
- 9K. Karon, M. Lapkowski, J. Solid State Electrochem. 2015, 19, 2601–2610.
- 10L. Kortekaas, F. Lancia, J. D. Steen, W. R. Browne, J. Phys. Chem. C 2017, 121, 14688–14702.
- 11X. Fan, J. You, T. Jiao, G. Tan, X. Yu, Org. Prep. Proced. Int. 2000, 32, 284–287.
- 12A. I. Nguyen, J. Wang, D. S. Levine, M. S. Ziegler, T. D. Tilley, Chem. Sci. 2017, 8, 4274–4284.
- 13R. Chakrabarty, S. J. Bora, B. K. Das, Inorg. Chem. 2007, 46, 9450–9462.
- 14S. H. Hsiao, S. W. Lin, Polym. Chem. 2016, 7, 198–211.
- 15M. L. Rigsby, S. Mandal, W. Nam, L. C. Spencer, A. Llobet, S. S. Stahl, Chem. Sci. 2012, 3, 3058–3062.
- 16D. J. Wasylenko, C. Ganesamoorthy, J. Borau-Garcia, C. P. Berlinguette, Chem. Commun. 2011, 47, 4249–4251.
- 17D. Das, S. Pattanayak, K. K. Singh, B. Garai, S. S. Gupta, Chem. Commun. 2016, 52, 11787–11790.
- 18H. Lei, A. Han, F. Li, M. Zhang, Y. Han, P. Du, W. Lai, R. Cao, Phys. Chem. Chem. Phys. 2014, 16, 1883–1893.
- 19J. F. Khosrowabadi Kotyk, C. M. Hanna, R. L. Combs, J. W. Ziller, J. Y. Yang, Chem. Sci. 2018, 9, 2750–2755.
- 20S. Biswas, S. Bose, J. Debgupta, P. Das, A. N. Biswas, Dalton Trans. 2020, 49, 7155–7165.
- 21D. K. Dogutan, R. McGuire, D. G. Nocera, J. Am. Chem. Soc. 2011, 133, 9178–9180.
- 22S. Liu, Y. J. Lei, Z. J. Xin, R. J. Xiang, S. Styring, A. Thapper, H. Y. Wang, Int. J. Hydrogen Energy 2017, 42, 29716–29724.
- 23H. A. Younus, N. Ahmad, A. H. Chughtai, M. Vandichel, M. Busch, K. V. Hecke, M. Yusubov, S. Song, F. Verpoort, ChemSusChem 2017, 10, 862–875.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.