Unveiling the Hydration Structure of Ferrihydrite for Hole Storage in Photoelectrochemical Water Oxidation
Pengpeng Wang
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorDeng Li
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorHaibo Chi
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorYongle Zhao
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorProf. Junhu Wang
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorDongfeng Li
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorShan Pang
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorPing Fu
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorCorresponding Author
Prof. Jingying Shi
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorCorresponding Author
Prof. Can Li
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorPengpeng Wang
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorDeng Li
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorHaibo Chi
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorYongle Zhao
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorProf. Junhu Wang
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorDongfeng Li
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorShan Pang
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorPing Fu
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorCorresponding Author
Prof. Jingying Shi
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorCorresponding Author
Prof. Can Li
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorAbstract
Ferrihydrite (Fh) has been demonstrated acting as a hole-storage layer (HSL) in photoelectrocatalysis system. However, the intrinsic structure responsible for the hole storage function for Fh remains unclear. Herein, by dehydrating the Fh via a careful calcination, the essential relation between the HSL function and the structure evolution of Fh material is unraveled. The irreversible and gradual loss of crystal water molecules in Fh leads to the weakening of the HSL function, accompanied with the arrangement of inner structure units. A structure evolution of the dehydration process is proposed and the primary active structure of Fh for HSL is identified as the [FeO6] polyhedral units bonding with two or three molecules of crystal water. With the successive loss of chemical crystal water, the coordination symmetry of [FeO6] hydration units undergoes mutation and a more ordered structure is formed, causing the difficulty for accepting photogenerated holes as a consequence.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202014871-sup-0001-misc_information.pdf1.3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aN. S. Lewis, Science 2007, 315, 798–801;
- 1bT. R. Cook, D. K. Dogutan, S. Y. Reece, Y. Surendranath, T. S. Teets, D. G. Nocera, Chem. Rev. 2010, 110, 6474–6502.
- 2
- 2aA. Fujishima, K. Honda, Nature 1972, 238, 37–38;
- 2bM. Grätzel, Nature 2001, 414, 338–344;
- 2cL. J. Minggu, W. R. Wan Daud, M. B. Kassim, Int. J. Hydrogen Energy 2010, 35, 5233–5244;
- 2dT. Wang, J. Gong, Angew. Chem. Int. Ed. 2015, 54, 10718–10732; Angew. Chem. 2015, 127, 10866–10881;
- 2eD. Kang, T. W. Kim, S. R. Kubota, A. C. Cardiel, H. G. Cha, K. S. Choi, Chem. Rev. 2015, 115, 12839–12887.
- 3
- 3aX. Lu, S. Xie, H. Yang, Y. Tong, H. Ji, Chem. Soc. Rev. 2014, 43, 7581–7593;
- 3bJ. Zheng, H. Zhou, Y. Zou, R. Wang, Y. Lyu, S. P. Jiang, S. Wang, Energy Environ. Sci. 2019, 12, 2345–2374;
- 3cY. Yang, S. Niu, D. Han, T. Liu, G. Wang, Y. Li, Adv. Energy Mater. 2017, 7, 1700555;
- 3dT. Higashi, H. Kaneko, T. Minegishi, H. Kobayashi, M. Zhong, Y. Kuang, T. Hisatomi, M. Katayama, T. Takata, H. Nishiyama, T. Yamada, K. Domen, Chem. Commun. 2017, 53, 11674–11677.
- 4T. Yao, X. An, H. Han, J. Q. Chen, C. Li, Adv. Energy Mater. 2018, 8, 1800210.
- 5
- 5aY. He, J. E. Thorne, C. H. Wu, P. Ma, C. Du, Q. Dong, J. Guo, D. Wang, Chem 2016, 1, 640–655;
- 5bA. Ishikawa, T. Takata, J. N. Kondo, M. Hara, K. Domen, J. Phys. Chem. B 2004, 108, 11049–11053.
- 6
- 6aC. Ding, J. Shi, Z. Wang, C. Li, ACS Catal. 2017, 7, 675–688;
- 6bD. Li, J. Shi, C. Li, Small 2018, 14, 1704179;
- 6cY. He, R. Chen, W. Fa, B. Zhang, D. Wang, J. Chem. Phys. 2019, 151, 130902;
- 6dT. Yao, R. Chen, J. Li, J. Han, W. Qin, H. Wang, J. Shi, F. Fan, C. Li, J. Am. Chem. Soc. 2016, 138, 13664–13672;
- 6eS. Ye, C. Ding, R. Chen, F. Fan, P. Fu, H. Yin, X. Wang, Z. Wang, P. Du, C. Li, J. Am. Chem. Soc. 2018, 140, 3250–3256;
- 6fW. Shi, W. Yu, D. Li, D. Zhang, W. Fan, J. Shi, C. Li, Chem. Mater. 2019, 31, 1928–1935.
- 7G. Liu, J. Shi, F. Zhang, Z. Chen, J. Han, C. Ding, S. Chen, Z. Wang, H. Han, C. Li, Angew. Chem. Int. Ed. 2014, 53, 7295–7299; Angew. Chem. 2014, 126, 7423–7427.
- 8A. Murphy, P. Barnes, L. Randeniya, I. Plumb, I. Grey, M. Horne, J. Glasscock, Int. J. Hydrogen Energy 2006, 31, 1999–2017.
- 9
- 9aG. Liu, P. Fu, L. Zhou, P. Yan, C. Ding, J. Shi, C. Li, Chem. Eur. J. 2015, 21, 9624–9628;
- 9bG. Liu, S. Ye, P. Yan, F. Xiong, P. Fu, Z. Wang, Z. Chen, J. Shi, C. Li, Energy Environ. Sci. 2016, 9, 1327–1334.
- 10F. Yu, F. Li, T. Yao, J. Du, Y. Liang, Y. Wang, H. Han, L. Sun, ACS Catal. 2017, 7, 1868–1874.
- 11J. L. Jambor, J. E. Dutrizac, Chem. Rev. 1998, 98, 2549–2586.
- 12
- 12aT. Kawasaki, Y. Hakoda, H. Mineki, K. Suzuki, K. Soai, J. Am. Chem. Soc. 2010, 132, 2874–2875;
- 12bN. Yoshida, Y. Yamada, S.-i. Nishimura, Y. Oba, M. Ohnuma, A. Yamada, J. Phys. Chem. C 2013, 117, 12003–12009;
- 12cJ. Qi, Y. P. Lin, D. Chen, T. Zhou, W. Zhang, R. Cao, Angew. Chem. Int. Ed. 2020, 59, 8917–8921; Angew. Chem. 2020, 132, 9002–9006.
- 13J.-F. Boily, X. Song, Commun. Chem. 2020, 3.
- 14
- 14aB. Klahr, S. Gimenez, F. Fabregat-Santiago, J. Bisquert, T. W. Hamann, Energy Environ. Sci. 2012, 5, 7626;
- 14bF. Le Formal, K. Sivula, M. Grätzel, J. Phys. Chem. C 2012, 116, 26707–26720.
- 15D. L. A. de Faria, F. N. Lopes, Vib. Spectrosc. 2007, 45, 117–121.
- 16M. Sassi, K. M. Rosso, ACS Earth Space Chem. 2019, 3, 70–78.
- 17
- 17aF. M. Michel, V. Barron, J. Torrent, M. P. Morales, C. J. Serna, J. F. Boily, Q. Liu, A. Ambrosini, A. C. Cismasu, G. E. Brown, Jr., Proc. Natl. Acad. Sci. USA 2010, 107, 2787–2792;
- 17bH. Liu, Y. Wang, Y. Ma, Y. Wei, G. Pan, Chemosphere 2010, 79, 802–806.
- 18
- 18aH. F. Shao, X. F. Qian, J. Yin, Z. K. Zhu, J. Solid State Chem. 2005, 178, 3130–3136;
- 18bX. Wang, X. Chen, L. Gao, H. Zheng, M. Ji, C. Tang, T. Shen, Z. Zhang, J. Mater. Chem. 2004, 14, 905–907.
- 19
- 19aM. Mullet, V. Khare, C. Ruby, Surf. Interface Anal. 2008, 40, 323–328;
- 19bT. Echigo, T. Hatta, S. Nemoto, S. Takizawa, Phys. Chem. Minerals 2012, 39, 769–778.
- 20
- 20aF. Le Formal, N. Tétreault, M. Cornuz, T. Moehl, M. Grätzel, K. Sivula, Chem. Sci. 2011, 2, 737–743;
- 20bE. S. Kim, N. Nishimura, G. Magesh, J. Y. Kim, J. W. Jang, H. Jun, J. Kubota, K. Domen, J. S. Lee, J. Am. Chem. Soc. 2013, 135, 5375–5383.
- 21R. L. Doyle, M. E. Lyons, Phys. Chem. Chem. Phys. 2013, 15, 5224–5237.
- 22K. Eusterhues, F. E. Wagner, W. Haeusler, M. Hanzlik, H. Knicker, K. U. Totsche, I. Koegel-Knabner, U. Schwertmann, Environ. Sci. Technol. 2008, 42, 7891–7897.
- 23
- 23aF. M. Michel, L. Ehm, S. M. Antao, P. L. Lee, P. J. Chupas, G. Liu, D. R. Strongin, M. A. A. Schoonen, B. L. Phillips, J. B. Parise, Science 2007, 316, 1726–1729;
- 23bN. Pailhé, A. Wattlaux, M. Gaudon, A. Demourgues, J. Solid State Chem. 2008, 181, 1040–1047;
- 23cX. Wang, M. Zhu, L. K. Koopal, W. Li, W. Xu, F. Liu, J. Zhang, Q. Liu, X. Feng, D. L. Sparks, Environ. Sci.: Nano 2016, 3, 190–202;
- 23dS. V. Stolyar, D. A. Balaev, A. A. Krasikov, A. A. Dubrovskiy, R. N. Yaroslavtsev, O. A. Bayukov, M. N. Volochaev, R. S. Iskhakov, J. Supercond. Nov. Magn. 2018, 31, 1133–1138;
- 23eT. Hiemstra, Geochim. Cosmochim. Acta 2013, 105, 316–325.
- 24
- 24aM. Mohapatra, S. Layek, S. Anand, H. C. Verma, B. K. Mishra, Phys. Status Solidi B 2013, 250, 65–72;
- 24bĽ. Kišš, P. Rapta, R. Boča, M. Miglierini, M. Čaplovičová, M. Martinka, L. Žemlička, P. Fodran, Monatsh. Chem. 2017, 148, 2019–2029;
- 24cY. C. Xie, X. P. Xu, B. Y. Zhao, Y. C. Tang, G. B. Wu, Catal. Lett. 1992, 13, 239–245.
- 25C. J. Masina, J. H. Neethling, E. J. Olivier, E. Ferg, S. Manzini, L. Lodya, P. Mohlala, M. W. Ngobeni, Thermochim. Acta 2015, 599, 73–83.
- 26Y. Cudennec, A. Lecerf, J. Solid State Chem. 2006, 179, 716–722.
- 27K. Sivula, R. Zboril, F. Le Formal, R. Robert, A. Weidenkaff, J. Tucek, J. Frydrych, M. Graetzel, J. Am. Chem. Soc. 2010, 132, 7436–7444.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.