The Characteristics of Disulfide-Centered Hydrogen Bonds
Xiaolong Li
School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
Institut für Physikalische Chemie and Elektrochemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraße 3A, 30167 Hannover, Germany
These authors contributed equally to this work.
Search for more papers by this authorTao Lu
School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
These authors contributed equally to this work.
Search for more papers by this authorDr. Daniel A. Obenchain
Institut für Physikalische Chemie and Elektrochemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraße 3A, 30167 Hannover, Germany
These authors contributed equally to this work.
Search for more papers by this authorJiaqi Zhang
School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
Search for more papers by this authorDr. Sven Herbers
Institut für Physikalische Chemie and Elektrochemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraße 3A, 30167 Hannover, Germany
Search for more papers by this authorCorresponding Author
Dr. Jens-Uwe Grabow
Institut für Physikalische Chemie and Elektrochemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraße 3A, 30167 Hannover, Germany
Search for more papers by this authorCorresponding Author
Dr. Gang Feng
School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
Search for more papers by this authorXiaolong Li
School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
Institut für Physikalische Chemie and Elektrochemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraße 3A, 30167 Hannover, Germany
These authors contributed equally to this work.
Search for more papers by this authorTao Lu
School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
These authors contributed equally to this work.
Search for more papers by this authorDr. Daniel A. Obenchain
Institut für Physikalische Chemie and Elektrochemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraße 3A, 30167 Hannover, Germany
These authors contributed equally to this work.
Search for more papers by this authorJiaqi Zhang
School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
Search for more papers by this authorDr. Sven Herbers
Institut für Physikalische Chemie and Elektrochemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraße 3A, 30167 Hannover, Germany
Search for more papers by this authorCorresponding Author
Dr. Jens-Uwe Grabow
Institut für Physikalische Chemie and Elektrochemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraße 3A, 30167 Hannover, Germany
Search for more papers by this authorCorresponding Author
Dr. Gang Feng
School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
Search for more papers by this authorAbstract
The disulfide-centered hydrogen bonds in the three different model systems of diethyl disulfide⋅⋅⋅H2O/H2CO/HCONH2 clusters were characterized by high-resolution Fourier transform microwave spectroscopy and quantum chemical computations. The global minimum energy structures for each cluster are experimentally observed and are characterized by one of the three different S−S⋅⋅⋅H−C/N/O disulfide-centered hydrogen bonds and two O⋅⋅⋅H−C hydrogen bonds. Non-covalent interaction and natural bond orbital analyses further confirm the experimental observations. The symmetry-adapted perturbation theory (SAPT) analysis reveals that electrostatic is dominant in diethyl disulfide⋅⋅⋅H2O/HCONH2 clusters being consistent with normal hydrogen bonds, whilst dispersion takes over in diethyl disulfide⋅⋅⋅H2CO cluster. Our study gives accurate structural parameters for the disulfide bond involved non-covalent clusters providing important benchmarking data for the theoretical evaluation of more complex systems.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202014364-sup-0001-misc_information.pdf1.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1D. Fass, C. Thorpe, Chem. Rev. 2018, 118, 1169–1198.
- 2C. Jiang, W. Müller, H. Schröder, Y. Guo, Chem. Rev. 2012, 112, 2179–2207.
- 3P. L. Martelli, P. Fariselli, R. Casadio, Proteomics 2004, 4, 1665–1671.
- 4A. Gori, P. Gagni, S. Rinaldi, Chem. Eur. J. 2017, 23, 14987–14995.
- 5P. J. Hogg, Trends Biochem. Sci. 2003, 28, 210–214.
- 6D. Fass, Annu. Rev. Biophys. 2012, 41, 63–79.
- 7H. J. Wijma, R. J. Floor, P. A. Jekel, D. Baker, S. J. Marrink, D. B. Janssen, Protein Eng. Des. Sel. 2014, 27, 49–58.
- 8M. Góngora-Benítez, J. Tulla-Puche, F. Albericio, Chem. Rev. 2014, 114, 901–926.
- 9R. Bhattacharyya, D. Pal, P. Chakrabarti, Protein Eng. Des. Sel. 2004, 17, 795–808.
- 10M. Iwaoka, N. Babe, Phosphorus Sulfur Silicon Relat. Elem. 2015, 190, 1257–1264.
- 11M. R. Koebel, A. Cooper, G. Schmadeke, S. Jeon, M. Narayan, S. Sirimulla, J. Chem. Inf. Model. 2016, 56, 2298–2309.
- 12K. Kříž, J. Fanfrlík, M. Lepšík, ChemPhysChem 2018, 19, 2540–2548.
- 13D. L. Howard, H. G. Kjaergaard, Phys. Chem. Chem. Phys. 2008, 10, 4113–4118.
- 14
- 14aH. S. Biswal, S. Bhattacharyya, A. Bhattacherjee, S. Wategaonkar, Int. Rev. Phys. Chem. 2015, 34, 99–160;
- 14bV. R. Mundlapati, S. Gautam, D. K. Sahoo, A. Ghosh, H. S. Biswal, J. Phys. Chem. Lett. 2017, 8, 4573–4579.
- 15
- 15aM. Juanes, A. Lesarri, R. Pinacho, E. Charro, J. E. Rubio, L. Énriquez, M. Jaraiz, Chem. Eur. J. 2018, 24, 6564–6571;
- 15bM. Juanes, R. T. Saragi, W. Caminati, A. Lesarri, Chem. Eur. J. 2019, 25, 11402–11411.
- 16S. P. Black, J. K. M. Sanders, A. R. Stefankiewicz, Chem. Soc. Rev. 2014, 43, 1861–1872.
- 17W. Caminati, J.-U. Grabow in Frontiers and Advances in Molecular Spectroscopy (Ed: J. Laane), Elsevier, Amsterdam, 2018.
10.1016/B978-0-12-811220-5.00018-6 Google Scholar
- 18
- 18aT. J. Balle, W. H. Flygare, Rev. Sci. Instrum. 1981, 52, 33;
- 18bJ.-U. Grabow, W. Stahl, H. Dreizler, Rev. Sci. Instrum. 1996, 67, 4072;
- 18cM. K. Jahn, D. A. Dewald, D. Wachsmuth, J.-U. Grabow, S. C. Mehrotra, J. Mol. Spectrosc. 2012, 280, 54–60;
- 18dJ.-U. Grabow, Q. Gou, G. Feng, 72nd International Symposium on Molecular Spectroscopy, 2017, TH03.
- 19M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, et al., Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford, CT, 2016.
- 20S. F. Boys, F. Bernardi, Mol. Phys. 1970, 19, 553–566.
- 21J. Zhang, X. Li, Q. Gou, G. Feng, J. Phys. Chem. A 2018, 122, 5597–5601.
- 22H. M. T. Pickett, J. Mol. Spectrosc. 1991, 148, 371–377.
- 23J. K. G. Watson In Vibrational Spectra and Structure (Ed. J. R. Durig), Elsevier, New York, Amsterdam, 1977.
- 24J. Kraitchman, Am. J. Phys. 1953, 21, 17–24.
- 25
- 25aA. R. Ubbelohde, K. J. Gallagher, Acta Crystallogr. 1955, 8, 71–83;
- 25bL. Evangelisti, G. Feng, R. Rizzato, W. Caminati, ChemPhysChem 2011, 12, 1916–1920;
- 25cG. Feng, Q. Gou, L. Evangelisti, W. Caminati, Angew. Chem. Int. Ed. 2014, 53, 530–534; Angew. Chem. 2014, 126, 540–544.
- 26Z. Kisiel, J. Mol. Spectrosc. 2003, 218, 58–67.
- 27M. E. Sanz, J. C. López, J. L. Alonso, A. Maris, P. G. Favero, W. Caminati, J. Phys. Chem. A 1999, 103, 5285–5290.
- 28E. J. Cocinero, R. Sánchez, S. Blanco, A. Lesarri, J. C. López, J. L. Alonso, Chem. Phys. Lett. 2005, 402, 4–10.
- 29
- 29aB. Jeziorski, R. Moszynski, K. Szalewicz, Chem. Rev. 1994, 94, 1887–1930;
- 29bT. M. Parker, L. A. Burns, R. M. Parrish, A. G. Ryno, C. D. Sherrill, J. Chem. Phys. 2014, 140, 094106.
- 30R. M. Parrish, L. A. Burns, D. G. A. Smith, A. C. Simmonett, A. E. DePrince III, E. G. Hohenstein, U. Bozkaya, A. Y. Sokolov, R. Di Remigio, R. M. Richard, et al., J. Chem. Theory Comput. 2017, 13, 3185–3197.
- 31T. R. Dyke, K. M. Mack, J. S. Muenter, J. Chem. Phys. 1977, 66, 498–510.
- 32A. Das, P. K. Mandal, F. J. Lovas, C. Medcraft, N. R. Walker, E. Arunan, Angew. Chem. Int. Ed. 2018, 57, 15199–15203; Angew. Chem. 2018, 130, 15419–15423.
- 33A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899–926.
- 34E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. J. Cohen, W. Yang, J. Am. Chem. Soc. 2010, 132, 6498–6506.
- 35S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- 36S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456–1465.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.