Growth of Colloidal Nanocrystals by Liquid-Like Coalescence**
Dr. Bin Yuan
Department of Materials Science & Engineering, Iowa State University of Science and Technology, 2220 Hoover Hall, Ames, IA, 50011 USA
Department of Chemical & Biological Engineering, Iowa State University of Science and Technology, Sweeney Hall, Ames, IA, 50011 USA
Current address: Mechanical Engineering Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213 USA
Search for more papers by this authorCorresponding Author
Prof. Ludovico Cademartiri
Department of Materials Science & Engineering, Iowa State University of Science and Technology, 2220 Hoover Hall, Ames, IA, 50011 USA
Department of Chemical & Biological Engineering, Iowa State University of Science and Technology, Sweeney Hall, Ames, IA, 50011 USA
Ames Laboratory, U.S. Department of Energy, Ames, IA, 50011 USA
Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 17/A, 43124 Parma, Italy
Search for more papers by this authorDr. Bin Yuan
Department of Materials Science & Engineering, Iowa State University of Science and Technology, 2220 Hoover Hall, Ames, IA, 50011 USA
Department of Chemical & Biological Engineering, Iowa State University of Science and Technology, Sweeney Hall, Ames, IA, 50011 USA
Current address: Mechanical Engineering Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213 USA
Search for more papers by this authorCorresponding Author
Prof. Ludovico Cademartiri
Department of Materials Science & Engineering, Iowa State University of Science and Technology, 2220 Hoover Hall, Ames, IA, 50011 USA
Department of Chemical & Biological Engineering, Iowa State University of Science and Technology, Sweeney Hall, Ames, IA, 50011 USA
Ames Laboratory, U.S. Department of Energy, Ames, IA, 50011 USA
Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 17/A, 43124 Parma, Italy
Search for more papers by this authorA previous version of this manuscript has been deposited on a preprint server (https://arxiv.org/abs/2005.11775).
Abstract
We here describe, model, and predict the growth kinetics of amine-capped PbS colloidal nanoparticles in the absence of supersaturation. The particles grow by coalescence rather than by Ostwald ripening. A comparison of different models indicates that the effective activation energy of coalescence (67.65 kJ mol−1) is associated with two terms: a term proportional to the contact area between the ligand shells of two colliding particles, and a constant term. Our Brownian dynamics simulations show (i) how the remarkably low activation energy (or large rate constants) are most likely due to the large difference in size between the particles and their mean free path of diffusion, and (ii) how the low polydispersity is the likely result of the suppression of collision rates between rare populations due to crowding. The model successfully predicts the growth kinetics of nanoparticles, therefore enabling the precise control of the average particle size without the need of supersaturation.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202014275-sup-0001-misc_information.pdf2.2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Goldszal, J. Bousquet, Powder Technol. 2001, 117, 221–231.
- 2
- 2aJ. F. Banfield, S. A. Welch, H. Zhang, T. T. Ebert, R. L. Penn, Science 2000, 289, 751–754;
- 2bM. Niederberger, H. Cölfen, Phys. Chem. Chem. Phys. 2006, 8, 3271–3287.
- 3Z. Tang, N. A. Kotov, M. Giersig, Science 2002, 297, 237–240.
- 4
- 4aB. Deminiere, A. Colin, F. Leal-Calderon, J. Muzy, J. Bibette, Phys. Rev. Lett. 1999, 82, 229;
- 4bK. Pays, J. Giermanska-Kahn, B. Pouligny, J. Bibette, F. Leal-Calderon, Langmuir 2001, 17, 7758–7769.
- 5
- 5aS. P. Shields, V. N. Richards, W. E. Buhro, Chem. Mater. 2010, 22, 3212–3225;
- 5bV. N. Richards, N. P. Rath, W. E. Buhro, Chem. Mater. 2010, 22, 3556–3567;
- 5cF. Wang, V. N. Richards, S. P. Shields, W. E. Buhro, Chem. Mater. 2014, 26, 5–21;
- 5dB. Koo, B. A. Korgel, Nano Lett. 2008, 8, 2490–2496;
- 5eD. D. Vaughn, S.-I. In, R. E. Schaak, ACS Nano 2011, 5, 8852–8860;
- 5fV. N. Richards, S. P. Shields, W. E. Buhro, Chem. Mater. 2011, 23, 137–144.
- 6
- 6aH. Zheng, R. K. Smith, Y.-w. Jun, C. Kisielowski, U. Dahmen, A. P. Alivisatos, Science 2009, 324, 1309–1312;
- 6bD. Li, M. H. Nielsen, J. R. Lee, C. Frandsen, J. F. Banfield, J. J. De Yoreo, Science 2012, 336, 1014–1018;
- 6cL. R. Parent, D. B. Robinson, T. J. Woehl, W. D. Ristenpart, J. E. Evans, N. D. Browning, I. Arslan, ACS Nano 2012, 6, 3589–3596.
- 7
- 7aF. Huang, H. Z. Zhang, J. F. Banfield, J. Phys. Chem. B 2003, 107, 10470–10475;
- 7bG. Bogush, C. Zukoski IV, J. Colloid Interface Sci. 1991, 142, 19–34;
- 7cS. Yin, F. Huang, J. Zhang, J. Zheng, Z. Lin, J. Phys. Chem. C 2011, 115, 10357–10364;
- 7dL. Cademartiri, G. Guerin, K. J. M. Bishop, M. A. Winnik, G. A. Ozin, J. Am. Chem. Soc. 2012, 134, 9327–9334.
- 8
- 8aA. L. Brazeau, N. D. Jones, J. Phys. Chem. C 2009, 113, 20246–20251;
- 8bA. S. Ratkovich, R. L. Penn, J. Phys. Chem. C 2007, 111, 14098–14104;
- 8cF. Huang, H. Z. Zhang, J. F. Banfield, Nano Lett. 2003, 3, 373–378;
- 8dC. Ribeiro, E. J. H. Lee, E. Longo, E. R. Leite, ChemPhysChem 2005, 6, 690–696.
- 9B. Yuan, T. K. Egner, V. Venditti, L. Cademartiri, Nat. Commun. 2018, 9, 4078.
- 10L. Cademartiri, E. Montanari, G. Calestani, A. Migliori, A. Guagliardi, G. A. Ozin, J. Am. Chem. Soc. 2006, 128, 10337–10346.
- 11F. J. Massey, Jr., J. Am. Stat. Assoc. 1951, 46, 68–78.
- 12
- 12aR. L. Penn, J. F. Banfield, Science 1998, 281, 969–971;
- 12bD. Ramkrishna, Population balances: Theory and applications to particulate systems in engineering, Elsevier, Amsterdam, 2000.
- 13J. N. Israelachvili, Intermolecular and surface forces, Academic Press, New York, 2015.
- 14M. V. Smoluchowski, Phys. Z. 1916, 17, 557–585.
- 15M. K. Alam, Aerosol Sci. Technol. 1987, 6, 41–52.
- 16
- 16aJ. Zhang, Y. Wang, J. Zheng, F. Huang, D. Chen, Y. Lan, G. Ren, Z. Lin, C. Wang, J. Phys. Chem. B 2007, 111, 1449–1454;
- 16bC. M. Evans, A. M. Love, E. A. Weiss, J. Am. Chem. Soc. 2012, 134, 17298–17305;
- 16cJ. Zhang, Z. Lin, Y. Lan, G. Ren, D. Chen, F. Huang, M. Hong, J. Am. Chem. Soc. 2006, 128, 12981–12987;
- 16dZ. Y. Zhuang, J. Zhang, F. Huang, Y. H. Wang, Z. Lin, Phys. Chem. Chem. Phys. 2009, 11, 8516–8521.
- 17 Lange's Handbook of Chemistry, 15th ed., McGraw-Hill, New York, 1999.
- 18
- 18aM. Lattuada, J. Phys. Chem. B 2012, 116, 120–129;
- 18bS. Torquato, J. Stat. Phys. 1991, 65, 1173–1206.
- 19D. Coppersmith, P. Tetali, P. Winkler, SIAM J. Discrete Math. 1993, 6, 363–374.
- 20V. Mendez, S. Fedotov, W. Horsthemke, Reaction-transport systems: mesoscopic foundations, fronts, and spatial instabilities, Springer Science & Business Media, Heidelberg, 2010.
- 21P. Meakin, F. Family, Phys. Rev. A 1987, 36, 5498.
- 22J. S. Kim, A. Yethiraj, Biophys. J. 2009, 96, 1333–1340.
- 23S. L. Scott, ACS Publications, 2019.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.