Deeply Cycled Sodium Metal Anodes at Low Temperature and in Lean Electrolyte Conditions
Dr. Xiaofei Hu
Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755 USA
Search for more papers by this authorEdward Matios
Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755 USA
Search for more papers by this authorYiwen Zhang
Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755 USA
Search for more papers by this authorChuanlong Wang
Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755 USA
Search for more papers by this authorDr. Jianmin Luo
Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Weiyang Li
Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755 USA
Search for more papers by this authorDr. Xiaofei Hu
Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755 USA
Search for more papers by this authorEdward Matios
Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755 USA
Search for more papers by this authorYiwen Zhang
Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755 USA
Search for more papers by this authorChuanlong Wang
Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755 USA
Search for more papers by this authorDr. Jianmin Luo
Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Weiyang Li
Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755 USA
Search for more papers by this authorAbstract
Enabling high-performing alkali metal anodes at low temperature and in lean electrolyte conditions is critical for the advancement of next-generation batteries with high energy density and improved safety. We present an ether–ionic liquid composite electrolyte to tackle the problem of dendrite growth of metallic sodium anode at low temperatures ranging from 0 to −40 °C. This composite electrolyte enables a stable sodium metal anode to be deeply cycled at 2 mA cm−2 with an ultrahigh reversible capacity of 50 mAh cm−2 for 500 hours at −20 °C in lean electrolyte (1.0 μL mAh−1) conditions. Using the composite electrolyte, full cells with Na3V2(PO4)3 as cathode and sodium metal as anode present a high capacity retention of 90.7 % after 1,000 cycles at 2C at −20 °C. The sodium–carbon dioxide batteries also exhibit a reversible capacity of 1,000 mAh g−1 over 50 cycles across a range of temperatures from −20 to 25 °C.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202014241-sup-0001-misc_information.pdf1.6 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aT. Ma, Z. Pan, L. C. Miao, C. C. Chen, M. Han, Z. F. Shang, J. Chen, Angew. Chem. Int. Ed. 2018, 57, 3158–3162; Angew. Chem. 2018, 130, 3212–3216;
- 1bQ. S. Nian, J. Y. Wang, S. Liu, T. J. Sun, S. B. Zheng, Y. Zhang, Z. L. Tao, J. Chen, Angew. Chem. Int. Ed. 2019, 58, 16994–16999; Angew. Chem. 2019, 131, 17150–17155;
- 1cX. L. Dong, Z. W. Guo, Z. Y. Guo, Y. G. Wang, Y. Y. Xia, Joule 2018, 2, 902–913;
- 1dY. You, H. R. Yao, S. Xin, Y. X. Yin, T. T. Zuo, C. P. Yang, Y. G. Guo, Y. Cui, L. J. Wan, J. B. Goodenough, Adv. Mater. 2016, 28, 7243–7248;
- 1eA. C. Thenuwara, P. P. Shetty, M. T. McDowell, Nano Lett. 2019, 19, 8664–8672.
- 2
- 2aA. Gupta, A. Manthiram, Adv. Energy Mater. 2020, 10, 2001972;
- 2bK. Matsumoto, C.-Y. Chen, T. Kiko, J. Hwang, T. Hosokawa, T. Nohira, R. Hagiwara, ECS Trans. 2016, 75, 139–145.
- 3
- 3aY. X. Wang, Y. X. Wang, Y.-X. Wang, X. M. Feng, W. H. Chen, X. P. Ai, H. X. Yang, Y. L. Cao, Chem 2019, 5, 1–24;
- 3bB. Lee, E. Paek, D. Mitlin, S. W. Lee, Chem. Rev. 2019, 119, 5416–5460.
- 4
- 4aY. Lu, L. Li, Q. Zhang, Z. Q. Niu, J. Chen, Joule 2018, 2, 1747–1770;
- 4bS. Choudhury, S. Y. Wei, Y. Ozhabes, D. Gunceler, M. J. Zachman, Z. Y. Tu, J. H. Shin, P. Nath, A. Agrawal, L. F. Kourkoutis, T. A. Arias, L. A. Archer, Nat. Commun. 2017, 8, 88;
- 4cH. Wang, C. L. Wang, E. Matios, W. Y. Li, Nano Lett. 2017, 17, 6808–6815;
- 4dZ. W. Seh, J. Sun, Y. M. Sun, Y. Cui, ACS Cent. Sci. 2015, 1, 449–455.
- 5
- 5aB. Dunn, H. Kamath, J. M. Tarascon, Science 2011, 334, 928–935;
- 5bD. Larcher, J. M. Tarascon, Nat. Chem. 2015, 7, 19–29;
- 5cM. Lee, J. Hong, J. Lopez, Y. M. Sun, D. W. Feng, K. Lim, W. C. Chueh, M. F. Toney, Y. Cui, Z. N. Bao, Nat. Energy 2017, 2, 861–868;
- 5dY. Lu, Y. C. Cai, Q. Zhang, L. J. Liu, Z. Q. Niu, J. Chen, Chem. Sci. 2019, 10, 4306–4312;
- 5eY.-X. Wang, J. P. Yang, W. H. Lai, S.-L. Chou, Q.-F. Gu, H. K. Liu, D. Y. Zhao, S. X. Dou, J. Am. Chem. Soc. 2016, 138, 16576–16579;
- 5fH. Yadegari, Q. Sun, X. L. Sun, Adv. Mater. 2016, 28, 7065–7093;
- 5gQ. L. Zou, Z. J. Liang, G.-Y. Du, C.-Y. Liu, E. Y. Li, Y.-C. Lu, J. Am. Chem. Soc. 2018, 140, 10740–10748.
- 6
- 6aX. L. Fan, J. Yue, F. D. Han, J. Chen, T. Deng, X. Q. Zhou, S. Hou, C. S. Wang, ACS Nano 2018, 12, 3360–3368;
- 6bW. D. Zhou, Y. T. Li, S. Xin, J. B. Goodenough, ACS Cent. Sci. 2017, 3, 52–57;
- 6cB. Y. Liu, K. Fu, Y. H. Gong, C. P. Yang, Y. G. Yao, Y. B. Wang, C. W. Wang, Y. D. Kuang, G. Pastel, H. Xie, E. D. Wachsman, L. B. Hu, Nano Lett. 2017, 17, 4917–4923;
- 6dX. F. Hu, Z. F. Li, Y. R. Zhao, J. C. Sun, Q. Zhao, J. B. Wang, Z. L. Tao, J. Chen, Sci. Adv. 2017, 3, e1602396;
- 6eY. Zhao, L. V. Goncharova, Q. Zhang, P. Kaghazchi, Q. Sun, A. Lushington, B. Q. Wang, R. Y. Li, X. L. Sun, Nano Lett. 2017, 17, 5653–5659;
- 6fX. F. Hu, P. H. Joo, H. Wang, E. Matios, C. L. Wang, J. M. Luo, X. Lu, K. S. Yang, W. Y. Li, Adv. Funct. Mater. 2019, 29, 1807974;
- 6gD. N. Lei, Y.-B. He, H. J. Huang, Y. F. Yuan, G. M. Zhong, Q. Zhao, X. G. Hao, D. F. Zhang, C. Lai, S. W. Zhang, J. B. Ma, Y. P. Wei, Q. P. Yu, W. Lv, Y. Yu, B. H. Li, Q.-H. Yang, Y. Yang, J. Lu, F. Y. Kang, Nat. Commun. 2019, 10, 4244;
- 6hE. Matios, H. Wang, C. Wang, W. Y. Li, Ind. Eng. Chem. Res. 2019, 58, 9758–9780.
- 7
- 7aH. Wang, C. L. Wang, E. Matios, W. Y. Li, Angew. Chem. Int. Ed. 2018, 57, 7734–7737; Angew. Chem. 2018, 130, 7860–7863;
- 7bQ. W. Shi, Y. R. Zhong, M. Wu, H. Z. Wang, H. L. Wang, Angew. Chem. Int. Ed. 2018, 57, 9069–9072; Angew. Chem. 2018, 130, 9207–9210;
- 7cR. Dugas, A. Ponrouch, G. Gachot, R. David, M. R. Palacin, J. M. Tarascon, J. Electrochem. Soc. 2016, 163, A2333–A2339;
- 7dR. G. Cao, K. Mishra, X. L. Li, J. F. Qian, M. H. Engelhard, M. E. Bowden, K. S. Han, K. T. Mueller, W. A. Henderson, J.-G. Zhang, Nano Energy 2016, 30, 825–830;
- 7eJ. M. Zheng, S. R. Chen, W. G. Zhao, J. H. Song, M. H. Engelhard, J.-G. Zhang, ACS Energy Lett. 2018, 3, 315–321.
- 8
- 8aM. Okoshi, Y. Yamada, A. Yamada, H. Nakai, J. Electrochem. Soc. 2013, 160, A2160–A2165;
- 8bA. Ponrouch, E. Marchante, M. Courty, J.-M. Tarascon, M. R. Palacín, Energy Environ. Sci. 2012, 5, 8572–8583;
- 8cJ. Guo, P. F. Wang, X. L. Wu, X.-H. Zhang, Q. Y. Yan, H. Chen, J. P. Zhang, Y. G. Guo, Adv. Mater. 2017, 29, 1701968;
- 8dT. F. Liu, Y. P. Zhang, Z. G. Jiang, X. Q. Zeng, J. P. Ji, Z. H. Li, X. H. Gao, M. H. Sun, Z. Lin, M. Ling, J. C. Zheng, C. D. Liang, Energy Environ. Sci. 2019, 12, 1512–1533.
- 9
- 9aA. C. Thenuwara, P. P. Shetty, N. Kondekar, S. E. Sandoval, K. Cavallaro, R. May, C.-T. Yang, L. E. Marbella, Y. Qi, M. T. McDowell, ACS Energy Lett. 2020, 5, 2411–2420;
- 9bH.-S. Ryu, H.-J. Ahn, K.-W. Kim, J.-H. Ahn, K.-K. Cho, T.-H. Nam, J.-U. Kim, G.-B. Cho, J. Power Sources 2006, 163, 201–206.
- 10
- 10aM. Armand, F. Endres, D. R. MacFarlane, H. Ohno, B. Scrosati, Nat. Mater. 2009, 8, 621–629;
- 10bC. S. Ding, T. Nohira, A. Fukunaga, R. Hagiwara, Electrochemistry 2015, 83, 91–94.
- 11
- 11aY. Gao, Z. F. Yan, J. L. Gray, X. He, D. W. Wang, T. H. Chen, Q. Q. Huang, Y. C. Li, H. Y. Wang, S. H. Kim, T. E. Mallouk, D. H. Wang, Nat. Mater. 2019, 18, 384–389;
- 11bY. X. Yang, Y. R. Zhong, Q. W. Shi, Z. H. Wang, K. N. Sun, H. L. Wang, Angew. Chem. Int. Ed. 2018, 57, 15549–15552; Angew. Chem. 2018, 130, 15775–15778.
- 12
- 12aK. Doi, Y. Yamada, M. Okoshi, J. Ono, C.-P. Chou, H. Nakai, A. Yamada, Angew. Chem. Int. Ed. 2019, 58, 8024–8028; Angew. Chem. 2019, 131, 8108–8112;
- 12bW. Y. Li, H. B. Yao, K. Yan, G. Y. Zheng, Z. Liang, Y.-M. Chiang, Y. Cui, Nat. Commun. 2015, 6, 7436.
- 13F. Sagane, T. Abe, Y. Iriyama, Z. Ogumi, J. Power Sources 2005, 146, 749–752.
- 14D. Aurbach, J. Power Sources 2000, 89, 206–218.
- 15M. Y. Nie, J. Demeaux, B. T. Young, D. R. Heskett, Y. J. Chen, A. Bose, J. C. Woicik, B. L. Lucht, J. Electrochem. Soc. 2015, 162, A7008–A7014.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.