Single-Molecule Conductance of 1,4-Azaborine Derivatives as Models of BN-doped PAHs
Lucía Palomino-Ruiz
Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071 Granada, Spain
Fundación IMDEA Nanociencia, 28049 Madrid, Spain
Search for more papers by this authorDr. Sandra Rodríguez-González
Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Present address: Departamento de Química Física, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
Search for more papers by this authorJoel G. Fallaque
Fundación IMDEA Nanociencia, 28049 Madrid, Spain
Search for more papers by this authorDr. Irene R. Márquez
Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071 Granada, Spain
Centro de Instrumentación Científica, Universidad de Granada, 18071 Granada, Spain
Search for more papers by this authorProf. Dr. Nicolás Agraït
Fundación IMDEA Nanociencia, 28049 Madrid, Spain
Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
Search for more papers by this authorDr. Cristina Díaz
Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Present address: Departamento de Química Física, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
Search for more papers by this authorDr. Edmund Leary
Fundación IMDEA Nanociencia, 28049 Madrid, Spain
Search for more papers by this authorProf. Dr. Juan M. Cuerva
Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071 Granada, Spain
Search for more papers by this authorDr. Araceli G. Campaña
Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071 Granada, Spain
Search for more papers by this authorCorresponding Author
Prof. Dr. Fernando Martín
Fundación IMDEA Nanociencia, 28049 Madrid, Spain
Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
Search for more papers by this authorCorresponding Author
Dr. Alba Millán
Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071 Granada, Spain
Search for more papers by this authorCorresponding Author
Dr. M. Teresa González
Fundación IMDEA Nanociencia, 28049 Madrid, Spain
Search for more papers by this authorLucía Palomino-Ruiz
Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071 Granada, Spain
Fundación IMDEA Nanociencia, 28049 Madrid, Spain
Search for more papers by this authorDr. Sandra Rodríguez-González
Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Present address: Departamento de Química Física, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
Search for more papers by this authorJoel G. Fallaque
Fundación IMDEA Nanociencia, 28049 Madrid, Spain
Search for more papers by this authorDr. Irene R. Márquez
Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071 Granada, Spain
Centro de Instrumentación Científica, Universidad de Granada, 18071 Granada, Spain
Search for more papers by this authorProf. Dr. Nicolás Agraït
Fundación IMDEA Nanociencia, 28049 Madrid, Spain
Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
Search for more papers by this authorDr. Cristina Díaz
Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Present address: Departamento de Química Física, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
Search for more papers by this authorDr. Edmund Leary
Fundación IMDEA Nanociencia, 28049 Madrid, Spain
Search for more papers by this authorProf. Dr. Juan M. Cuerva
Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071 Granada, Spain
Search for more papers by this authorDr. Araceli G. Campaña
Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071 Granada, Spain
Search for more papers by this authorCorresponding Author
Prof. Dr. Fernando Martín
Fundación IMDEA Nanociencia, 28049 Madrid, Spain
Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
Search for more papers by this authorCorresponding Author
Dr. Alba Millán
Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071 Granada, Spain
Search for more papers by this authorCorresponding Author
Dr. M. Teresa González
Fundación IMDEA Nanociencia, 28049 Madrid, Spain
Search for more papers by this authorIn memory of Professor Kilian Muñiz
Abstract
The single-molecule conductance of a series of BN-acene-like derivatives has been measured by using scanning tunneling break-junction techniques. A strategic design of the target molecules has allowed us to include azaborine units in positions that unambiguously ensure electron transport through both heteroatoms, which is relevant for the development of customized BN-doped nanographenes. We show that the conductance of the anthracene azaborine derivative is comparable to that of the pristine all-carbon anthracene compound. Notably, this heteroatom substitution has also allowed us to perform similar measurements on the corresponding pentacene-like compound, which is found to have a similar conductance, thus evidencing that B–N doping could also be used to stabilize and characterize larger acenes for molecular electronics applications. Our conclusions are supported by state-of-the-art transport calculations.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202014194-sup-0001-misc_information.pdf2.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aX. Y. Wang, X. Yao, A. Narita, K. Müllen, Acc. Chem. Res. 2019, 52, 2491–2505;
- 1bM. Stępień, E. Gońka, M. Żyła, N. Sprutta, Chem. Rev. 2017, 117, 3479–3716.
- 2
- 2aA. Staykov, X. Li, Y. Tsuji, K. Yoshizawa, J. Phys. Chem. C 2012, 116, 18451–18459;
- 2bW. Zhang, Y. Liu, G. Yu, Adv. Mater. 2014, 26, 6898–6904.
- 3
- 3aM. Pumera, J. Mater. Chem. C 2014, 2, 6454–6461;
- 3bT. Granzier-Nakajima, K. Fujisawa, V. Anil, M. Terrones, Y.-T. Yeh, Nanomaterials 2019, 9, 425;
- 3cS. Kawai, S. Nakatsuka, T. Hatakeyama, R. Pawlak, T. Meier, J. Tracey, E. Meyer, A. S. Foster, Sci. Adv. 2018, 4, eaar7181.
- 4
- 4aM. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, J. M. Tour, Science 1997, 278, 252–254;
- 4bN. Agraït, A. Yeyati, J. van Ruitenbeek, Phys. Rep. 2003, 377, 81–279;
- 4cB. Xu, N. J. Tao, Science 2003, 301, 1221–1223.
- 5Representative example for single type of heteroatom:
- 5aR. S. Klausen, J. R. Widawsky, T. A. Su, H. Li, Q. Chen, M. L. Steigerwald, L. Venkataraman, C. Nuckolls, Chem. Sci. 2014, 5, 1561–1564;
- 5bW. Chen, H. Li, J. R. Widawsky, C. Appayee, L. Venkataraman, R. Breslow, J. Am. Chem. Soc. 2014, 136, 918–920;
- 5cD. Miguel, L. Álvarez de Cienfuegos, A. Martin-Lasanta, S. P. Morcillo, L. A. Zotti, E. Leary, M. Burkle, Y. Asai, R. Jurado, D. J. Cárdenas, G. Rubio-Bollinger, N. Agraït, J. M. Cuerva, M. T. Gonzalez, J. Am. Chem. Soc. 2015, 137, 13818–13826;
- 5dE. J. Dell, B. Capozzi, J. Xia, L. Venkataraman, L. M. Campos, Nat. Chem. 2015, 7, 209–214;
- 5eZ. Cai, W.-Y. Lo, T. Zheng, L. Li, N. Zhang, Y. Hu, L. Yu, J. Am. Chem. Soc. 2016, 138, 10630–10635;
- 5fA. K. Ismael, K. Wang, A. Vezzoli, M. K. Al-Khaykanee, H. E. Gallagher, I. M. Grace, C. J. Lambert, B. Xu, R. J. Nichols, S. J. Higgins, Angew. Chem. Int. Ed. 2017, 56, 15378–15382; Angew. Chem. 2017, 129, 15580–15584;
- 5gY. Yang, M. Gantenbein, A. Alqorashi, J. Wei, S. Sangtarash, D. Hu, H. Sadeghi, R. Zhang, J. Pi, L. Chen, X. Huang, R. Li, J. Liu, J. Shi, W. Hong, C. J. Lambert, M. R. Bryce, J. Phys. Chem. C 2018, 122, 14965–14970;
- 5hX. Liu, X. Li, S. Sangtarash, H. Sadeghi, S. Decurtins, R. Häner, W. Hong, C. J. Lambert, S.-X. Liu, Nanoscale 2018, 10, 18131–18134.
- 6Representative example for multiple heteroatoms:
- 6aL. J. O'Driscoll, J. M. Hamill, I. Grace, B. W. Nielsen, E. Almutib, Y. Fu, W. Hong, C. J. Lambert, J. O. Jeppesen, Chem. Sci. 2017, 8, 6123–6130;
- 6bM. Baghernejad, C. Van Dyck, J. Bergfield, D. R. Levine, A. Gubicza, J. D. Tovar, M. Calame, P. Broekmann, W. Hong, Chem. Eur. J. 2019, 25, 15141–15146;
- 6cA. Markin, A. K. Ismael, R. J. Davidson, D. C. Milan, R. J. Nichols, S. J. Higgins, C. J. Lambert, Y.-T. Hsu, D. S. Yufit, A. Beeby, J. Phys. Chem. C 2020, 124, 6479–6485.
- 7Y.-H. Wang, H. Huang, Z. Yu, J.-F. Zheng, Y. Shao, X.-S. Zhou, J.-Z. Chen, J.-F. Li, J. Mater. Chem. C 2020, 8, 6826–6831.
- 8T. A. Su, H. Li, R. S. Klausen, J. R. Widawsky, A. Batra, M. L. Steigerwald, L. Venkataraman, C. Nuckolls, J. Am. Chem. Soc. 2016, 138, 7791–7795.
- 9Reviews:
- 9aP. G. Campbell, A. J. V. Marwitz, S. Y. Liu, Angew. Chem. Int. Ed. 2012, 51, 6074–6092; Angew. Chem. 2012, 124, 6178–6197;
- 9bG. Bélanger-Chabot, H. Braunschweig, D. K. Roy, Eur. J. Inorg. Chem. 2017, 4353–4368;
- 9cZ. X. Giustra, S.-Y. Liu, J. Am. Chem. Soc. 2018, 140, 1184–1194.
- 10M. Kranz, T. Clark, J. Org. Chem. 1992, 57, 5492–5500.
- 11M. Baranac-Stojanović, Chem. Eur. J. 2014, 20, 16558–16565.
- 12Reviews:
- 12aX. Y. Wang, J. Y. Wang, J. Pei, Chem. Eur. J. 2015, 21, 3528–3539;
- 12bJ. Huang, Y. Li, Front. Chem. 2018, 6, 341.
- 13Recent examples:
- 13aK. Matsui, S. Oda, K. Yoshiura, K. Nakajima, N. Yasuda, T. Hatakeyama, J. Am. Chem. Soc. 2018, 140, 1195–1198;
- 13bD. T. Yang, T. Nakamura, Z. He, X. Wang, A. Wakamiya, T. Peng, S. Wang, Org. Lett. 2018, 20, 6741–6745;
- 13cS. Nakatsuka, N. Yasuda, T. Hatakeyama, J. Am. Chem. Soc. 2018, 140, 13562–13565;
- 13dJ. S. A. Ishibashi, C. Darrigan, A. Chrostowska, B. Li, S. Y. Liu, Dalton Trans. 2019, 48, 2807–2812;
- 13eF.-D. Zhuang, Z.-H. Sun, Z.-F. Yao, Q.-R. Chen, Z. Huang, J.-H. Yang, J.-Y. Wang, J. Pei, Angew. Chem. Int. Ed. 2019, 58, 10708–10712; Angew. Chem. 2019, 131, 10818–10822;
- 13fJ. Dosso, T. Battisti, B. W. Ward, N. Demitri, C. E. Hughes, P. A. Williams, K. D. M. Harris, D. Bonifazi, Chem. Eur. J. 2020, 26, 6608–6621.
- 14Z.-H. Zhao, L. Wang, S. Li, W.-D. Zhang, G. He, D. Wang, S.-M. Hou, L.-J. Wan, J. Am. Chem. Soc. 2020, 142, 8068–8073.
- 15
- 15aY. S. Park, A. C. Whalley, M. Kamenetska, M. L. Steigerwald, M. S. Hybertsen, C. Nuckolls, L. Venkataraman, J. Am. Chem. Soc. 2007, 129, 15768–15769;
- 15bM. Frei, S. V. Aradhya, M. S. Hybertsen, L. Venkataraman, J. Am. Chem. Soc. 2012, 134, 4003–4006.
- 16E. Leary, L. A. Zotti, D. Miguel, I. R. Márquez, L. Palomino-Ruiz, J. M. Cuerva, G. Rubio-Bollinger, M. T. González, N. Agraït, J. Phys. Chem. C 2018, 122, 3211–3218.
- 17I. Kaur, W. Jia, R. P. Kopreski, S. Selvarasah, M. R. Dokmeci, C. Pramanik, N. E. McGruer, G. P. Miller, J. Am. Chem. Soc. 2008, 130, 16274–16286.
- 18
- 18aJ. S. Meisner, M. Kamenetska, M. Krikorian, M. L. Steigerwald, L. Venkataraman, C. Nuckolls, Nano Lett. 2011, 11, 1575–1579;
- 18bS. Sangtarash, C. Huang, H. Sadeghi, G. Sorohhov, J. Hauser, T. Wandlowski, W. Hong, S. Decurtins, S.-X. Liu, C. J. Lambert, J. Am. Chem. Soc. 2015, 137, 11425–11431;
- 18cE. Leary, C. Roche, H.-W. Jiang, I. Grace, M. T. González, G. Rubio-Bollinger, C. Romero-Muñiz, Y. Xiong, Q. Al-Galiby, M. Noori, M. A. Lebedeva, K. Porfyrakis, N. Agraït, A. Hodgson, S. J. Higgins, C. J. Lambert, H. L. Anderson, R. J. Nichols, J. Am. Chem. Soc. 2018, 140, 710–718;
- 18dZ. Chen, L. Chen, J. Liu, R. Li, C. Tang, Y. Hua, L. Chen, J. Shi, Y. Yang, J. Liu, J. Zheng, L. Chen, J. Cao, H. Chen, H. Xia, W. Hong, J. Phys. Chem. Lett. 2019, 10, 3453–3458.
- 19D. Cabosart, M. El Abbassi, D. Stefani, R. Frisenda, M. Calame, H. S. J. van der Zant, M. L. Perrin, Appl. Phys. Lett. 2019, 114, 143102.
- 20
- 20aM. S. Inkpen, Z.-F. Liu, H. Li, L. M. Campos, J. B. Neaton, L. Venkataraman, Nat. Chem. 2019, 11, 351–358;
- 20bV. Sacchetti, J. Ramos-Soriano, B. M. Illescas, M. T. González, D. Li, L. Palomino-Ruiz, I. R. Márquez, E. Leary, G. Rubio-Bollinger, F. Pauly, N. Agraït, N. Martín, J. Phys. Chem. C 2019, 123, 29386–29393.
- 21
- 21aA. Mishchenko, D. Vonlanthen, V. Meded, M. Bürkle, C. Li, I. V. Pobelov, A. Bagrets, J. K. Viljas, F. Pauly, F. Evers, M. Mayor, T. Wandlowski, Nano Lett. 2010, 10, 156–163;
- 21bL. Venkataraman, J. E. Klare, C. Nuckolls, M. Hybertsen, M. L. Steigerwald, Nature 2006, 442, 904–907.
- 22J. R. Quinn, F. W. Foss, L. Venkataraman, R. Breslow, J. Am. Chem. Soc. 2007, 129, 12376–12377.
- 23J. E. Anthony, Angew. Chem. Int. Ed. 2008, 47, 452–483; Angew. Chem. 2008, 120, 460–492.
- 24For selected examples of on-surface synthesis of higher acenes see:
- 24aR. Zuzak, R. Dorel, M. Krawiec, B. Such, M. Kolmer, M. Szymonski, A. M. Echavarren, S. Godlewski, ACS Nano 2017, 11, 9321–9329;
- 24bL. Colazzo, M. S. G. Mohammed, R. Dorel, P. Nita, C. García Fernández, P. Abufager, N. Lorente, A. M. Echavarren, D. G. De Oteyza, Chem. Commun. 2018, 54, 10260–10263;
- 24cR. Zuzak, R. Dorel, M. Kolmer, M. Szymonski, S. Godlewski, A. M. Echavarren, Angew. Chem. Int. Ed. 2018, 57, 10500–10505; Angew. Chem. 2018, 130, 10660–10665;
- 24dJ. Krüger, F. Eisenhut, D. Skidin, T. Lehmann, D. A. Ryndyk, G. Cuniberti, F. García, J. M. Alonso, E. Guitián, D. Pérez, D. Peña, G. Trinquier, J.-P. Malrieu, F. Moresco, C. Joachim, ACS Nano 2018, 12, 8506–8511;
- 24eJ. I. Urgel, S. Mishra, H. Hayashi, J. Wilhelm, C. A. Pignedoli, M. Di Giovannantonio, R. Widmer, M. Yamashita, N. Hieda, P. Ruffieux, H. Yamada, R. Fassel, Nat. Commun. 2019, 10, 861;
- 24fF. Eisenhut, T. Kühne, F. García, S. Fernández, E. Guitián, D. Pérez, G. Trinquier, G. Cuniberti, C. Joachim, D. Peña, F. Moresco, ACS Nano 2020, 14, 1011–1017. For examples of synthesis in solid state or solid matrix, see references cited in [23e].
- 25
- 25aM. Bendikov, H. M. Duong, K. Starkey, K. N. Houk, E. A. Carter, F. Wudl, J. Am. Chem. Soc. 2004, 126, 7416–7417;
- 25bK. J. Thorley, J. E. Anthony, Isr. J. Chem. 2014, 54, 642–649;
- 25cY. Yang, E. R. Davidson, W. Yang, Proc. Natl. Acad. Sci. USA 2016, 113, E5098–E5107;
- 25dG. Trinquier, G. David, J. P. Malrieu, J. Phys. Chem. A 2018, 122, 6926–6933.
- 26
- 26aT. Agou, J. Kobayashi, T. Kawashima, Org. Lett. 2006, 8, 2241–2244;
- 26bA. Tomohiro, A. Hiroki, K. Takayuki, Chem. Lett. 2010, 39, 612–613;
- 26cS. Madayanad Suresh, E. Duda, D. Hall, Z. Yao, S. Bagnich, A. M. Z. Slawin, H. Bässler, D. Beljonne, M. Buck, Y. Olivier, A. Köhler, E. Zysman-Colman, J. Am. Chem. Soc. 2020, 142, 6588–6599.
- 27T. Yelin, R. Korytár, N. Sukenik, R. Vardimon, B. Kumar, C. Nuckolls, F. Evers, O. Tal, Nat. Mater. 2016, 15, 444–449.
- 28S. Wu, M. T. González, R. Huber, S. Grunder, M. Mayor, C. Schönenberger, M. Calame, Nat. Nanotechnol. 2008, 3, 569–574.
- 29
- 29aM. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Phys. Rev. B 2002, 65, 165401;
- 29bN. Papior, N. Lorente, T. Frederiksen, A. García, M. Brandbyge, Comput. Phys. Commun. 2017, 212, 8–24.
- 30G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
- 31
- 31aD. J. Mowbray, G. Jones, K. S. Thygesen, J. Chem. Phys. 2008, 128, 111103;
- 31bL. Zotti, M. Bürke, F. Pauly, W. Lee, K. Kim, W. Jeong, Y. Asal, P. Reddy, J. C. Cuevas, New J. Phys. 2014, 16, 015004;
- 31cT. Markussen, C. Jin, K. S. Tygesen, Phys. Status Solidi B 2013, 250, 2394–2402.
- 32
- 32aT. Fu, S. Smith, M. Camarasa-Gómez, X. Yu, J. Xue, C. Nuckolls, F. Evers, L. Venkatamaran, S. Wei, Chem. Sci. 2019, 10, 9998–10002;
- 32bY. Kim, S. G. Bahoosh, D. Sysoiev, T. Huhn, F. Pauly, E. Scheer, Beilstein J. Nanotechnol. 2017, 8, 2606–2614.
- 33S. Guo, J. Hihath, I. Díez-Pérez, N. Tao, J. Am. Chem. Soc. 2011, 133, 19189–19197.
- 34M. Koepf, C. Koenigsmann, W. Ding, A. Batra, C. F. A. Negre, L. Venkataraman, G. W. Brudvig, V. S. Batista, C. A. Schmuttenmaer, R. H. Crabtree, Nanoscale 2016, 8, 16357–16362.
- 35
- 35aG. P. Zhang, Z. Xie, Y. Song, M. Z. Wei, G. C. Hu, C. K. Wang, Org. Electron. 2017, 48, 29–34;
- 35bS. Gil-Guerrero, N. Ramos-Berdullas, M. Mandado, Org. Electron. 2018, 61, 177–184.
- 36P. v. R. Schleyer, C. Maerker, A. Dransfel, H. Jiao, N. J. R. van Eikema Hommes, J. Am. Chem. Soc. 1996, 118, 6317–6318.
- 37
- 37aR. Gershoni-Poranne, A. Stanger, Chem. Eur. J. 2014, 20, 5673–5688;
- 37bA. Stanger, J. Org. Chem. 2010, 75, 2281–2288.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.