Diols Activation by Cu/Borinic Acids Synergistic Catalysis in Atroposelective Ring-Opening of Cyclic Diaryliodoniums
Dr. Kun Zhao
Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorShan Yang
Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorQi Gong
Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorLonghui Duan
Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Zhenhua Gu
Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026 P. R. China
Ocean College, Minjiang University, Fuzhou, Fujian, 350108 P. R. China
Search for more papers by this authorDr. Kun Zhao
Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorShan Yang
Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorQi Gong
Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorLonghui Duan
Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Zhenhua Gu
Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026 P. R. China
Ocean College, Minjiang University, Fuzhou, Fujian, 350108 P. R. China
Search for more papers by this authorAbstract
A Cu-catalyzed enantioselective ring-opening alkoxygenation reaction of cyclic diaryliodonium salts and diols in the presence of borinic acids was reported. Tuning structure of borinic acids with six or five-membered ring skeleton could selectively activate 1,2-diols or 1,4-diols. A catalytic cycle through a key ion pair model that accounts for the observed enantioselectivity was proposed.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202014127-sup-0001-checkcif.pdf116.4 KB | Supplementary |
ange202014127-sup-0001-misc_information.pdf12.1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aG. H. Christie, J. Kenner, J. Chem. Soc. 1922, 121, 614–620;
- 1bE. Kumarasamy, R. Raghunathan, M. P. Sibi, J. Sivaguru, Chem. Rev. 2015, 115, 11239–11300;
- 1cJ. Wencel-Delord, A. Panossian, F. R. Leroux, F. Colobert, Chem. Soc. Rev. 2015, 44, 3418–3430.
- 2
- 2aA. Miyashita, A. Yasuda, H. Takaya, K. Toriumi, T. Ito, T. Souchi, R. Noyori, J. Am. Chem. Soc. 1980, 102, 7932–7934;
- 2bY. Chen, S. Yekta, A. K. Yudin, Chem. Rev. 2003, 103, 3155–3211;
- 2cG. Bringmann, A. J. P. Mortimer, P. A. Keller, M. J. Gresser, J. Garner, M. Breuning, Angew. Chem. Int. Ed. 2005, 44, 5384–5427; Angew. Chem. 2005, 117, 5518–5563.
- 3
- 3aJ. Clayden, W. J. Moran, P. J. Edwards, S. R. LaPlante, Angew. Chem. Int. Ed. 2009, 48, 6398–6401; Angew. Chem. 2009, 121, 6516–6520;
- 3bM. C. Kozlowski, B. J. Morgan, E. C. Linton, Chem. Soc. Rev. 2009, 38, 3193–3207;
- 3cG. Bringmann, T. Gulder, T. A. M. Gulder, M. Breuning, Chem. Rev. 2011, 111, 563–639;
- 3dJ. E. Smyth, N. M. Butler, P. A. Keller, Nat. Prod. Rep. 2015, 32, 1562–1583.
- 4
- 4aT. Hayashi, K. Hayashizaki, T. Kiyoi, Y. Ito, J. Am. Chem. Soc. 1988, 110, 8153–8156;
- 4bA. N. Cammidge, K. V. L. Crepy, Chem. Commun. 2000, 1723–1724;
- 4cJ. J. Yin, S. L. Buchwald, J. Am. Chem. Soc. 2000, 122, 12051–12052;
- 4dM. Genov, A. Almorin, P. Espinet, Chem. Eur. J. 2006, 12, 9346–9352;
- 4eA. Bermejo, A. Ros, R. Fernandez, J. M. Lassaletta, J. Am. Chem. Soc. 2008, 130, 15798–15799;
- 4fY. Uozumi, Y. Matsuura, T. Arakawa, Y. M. A. Yamada, Angew. Chem. Int. Ed. 2009, 48, 2708–2710; Angew. Chem. 2009, 121, 2746–2748;
- 4gX. Q. Shen, G. O. Jones, D. A. Watson, B. Bhayana, S. L. Buchwald, J. Am. Chem. Soc. 2010, 132, 11278–11287;
- 4hS. L. Wang, J. J. Li, T. T. Miao, W. H. Wu, Q. Li, Y. Zhuang, Z. Y. Zhou, L. Q. Qiu, Org. Lett. 2012, 14, 1966–1969;
- 4iG. Q. Xu, W. Z. Fu, G. D. Liu, C. H. Senanayake, W. J. Tang, J. Am. Chem. Soc. 2014, 136, 570–573;
- 4jJ. Feng, B. Li, Y. He, Z. H. Gu, Angew. Chem. Int. Ed. 2016, 55, 2186–2190; Angew. Chem. 2016, 128, 2226–2230;
- 4kZ. J. Jia, C. Merten, R. Gontla, C. G. Daniliuc, A. P. Antonchick, H. Waldmann, Angew. Chem. Int. Ed. 2017, 56, 2429–2434; Angew. Chem. 2017, 129, 2469–2474;
- 4lC. Q. Pan, Z. X. Zhu, M. K. Zhang, Z. H. Gu, Angew. Chem. Int. Ed. 2017, 56, 4777–4781; Angew. Chem. 2017, 129, 4855–4859;
- 4mL. L. Ding, X. W. Sui, Z. H. Gu, ACS Catal. 2018, 8, 5630–5635;
- 4nJ. Feng, B. Li, J. L. Jiang, M. K. Zhang, W. B. Ouyang, C. Y. Li, Y. Fu, Z. H. Gu, Chin. J. Chem. 2018, 36, 11–14;
- 4oD. Shen, Y. Xu, S.-L. Shi, J. Am. Chem. Soc. 2019, 141, 14938–14945;
- 4pB. Qiu, B. Shuai, Y.-Z. Wang, D. Liu, Y.-G. Chen, P.-S. Gao, H.-X. Ma, S. Chen, T.-S. Mei, J. Am. Chem. Soc. 2020, 142, 9872–9878;
- 4qS. Yan, W. Xia, S. Li, Q. Song, S.-H. Xiang, B. Tan, J. Am. Chem. Soc. 2020, 142, 7322–7327.
- 5
- 5aA. Gutnov, B. Heller, C. Fischer, H. J. Drexler, A. Spannenberg, B. Sundermann, C. Sundermann, Angew. Chem. Int. Ed. 2004, 43, 3795–3797; Angew. Chem. 2004, 116, 3883–3886;
- 5bT. Shibata, T. Fujimoto, K. Yokota, K. Takagi, J. Am. Chem. Soc. 2004, 126, 8382–8383;
- 5cK. Tanaka, G. Nishida, A. Wada, K. Noguchi, Angew. Chem. Int. Ed. 2004, 43, 6510–6512; Angew. Chem. 2004, 116, 6672–6674;
- 5dG. Nishida, K. Noguchi, M. Hirano, K. Tanaka, Angew. Chem. Int. Ed. 2007, 46, 3951–3954; Angew. Chem. 2007, 119, 4025–4028;
- 5eK. Tanaka, Chem. Asian J. 2009, 4, 508–518;
- 5fM. Augé, A. Feraldi-Xypolia, M. Barbazanges, C. Aubert, L. Fensterbank, V. Gandon, E. Kolodziej, C. Ollivier, Org. Lett. 2015, 17, 3754–3757;
- 5gV. S. Raut, M. Jean, N. Vanthuyne, C. Roussel, T. Constantieux, C. Bressy, X. Bugaunt, D. Bonne, J. Rodriguez, J. Am. Chem. Soc. 2017, 139, 2140–2143;
- 5hF. Xue, T. Hayashi, Angew. Chem. Int. Ed. 2018, 57, 10368–10372; Angew. Chem. 2018, 130, 10525–10529;
- 5iS. C. Zheng, Q. Wang, J. P. Zhu, Angew. Chem. Int. Ed. 2019, 58, 9215–9219; Angew. Chem. 2019, 131, 9313–9317;
- 5jS. C. Zheng, Q. Wang, J. P. Zhu, Angew. Chem. Int. Ed. 2019, 58, 1494–1498; Angew. Chem. 2019, 131, 1508–1512;
- 5kJ. Zhang, M. Simon, C. Golz, M. Alcarazo, Angew. Chem. Int. Ed. 2020, 59, 5647–5650; Angew. Chem. 2020, 132, 5696–5699.
- 6
- 6aV. Bhat, S. Wang, B. M. Stoltz, S. C. Virgil, J. Am. Chem. Soc. 2013, 135, 16829–16832;
- 6bA. Ros, B. Estepa, P. Ramirez-Lopez, E. Alvarez, R. Fernandez, J. M. Lassaletta, J. Am. Chem. Soc. 2013, 135, 15730–15733;
- 6cJ. Zheng, S. L. You, Angew. Chem. Int. Ed. 2014, 53, 13244–13247; Angew. Chem. 2014, 126, 13460–13463;
- 6dP. Ramírez-López, A. Ros, B. Estepa, R. Fernández, B. Fiser, E. Gómez-Bengoa, J. M. Lassaletta, ACS Catal. 2016, 6, 3955–3964;
- 6eJ. Wang, M. W. Chen, Y. Ji, S. B. Hu, Y. G. Zhou, J. Am. Chem. Soc. 2016, 138, 10413–10416;
- 6fQ. J. Yao, S. Zhang, B. B. Zhan, B. F. Shi, Angew. Chem. Int. Ed. 2017, 56, 6617–6621; Angew. Chem. 2017, 129, 6717–6721;
- 6gG. Liao, B. Li, H. M. Chen, Q. J. Yao, Y. N. Xia, J. Luo, B. F. Shi, Angew. Chem. Int. Ed. 2018, 57, 17151–17155; Angew. Chem. 2018, 130, 17397–17401;
- 6hG. Liao, Q. J. Yao, Z. Z. Zhang, Y. J. Wu, D. Y. Huang, B. F. Shi, Angew. Chem. Int. Ed. 2018, 57, 3661–3665; Angew. Chem. 2018, 130, 3723–3727;
- 6iG. A. I. Moustafa, Y. Oki, S. Akai, Angew. Chem. Int. Ed. 2018, 57, 10278–10282; Angew. Chem. 2018, 130, 10435–10439;
- 6jH. H. Li, X. Q. Yan, J. T. Zhang, W. C. Guo, J. J. Jiang, J. Wang, Angew. Chem. Int. Ed. 2019, 58, 6732–6736; Angew. Chem. 2019, 131, 6804–6808;
- 6kJ. Luo, T. Zhang, L. Wang, G. Liao, Q. J. Yao, Y. J. Wu, B. B. Zhan, Y. Lan, X. F. Lin, B. F. Shi, Angew. Chem. Int. Ed. 2019, 58, 6708–6712; Angew. Chem. 2019, 131, 6780–6784;
- 6lM. M. Tian, D. C. Bai, G. F. Zheng, J. B. Chang, X. W. Li, J. Am. Chem. Soc. 2019, 141, 9527–9532;
- 6mQ. Wang, Z. J. Cai, C. X. Liu, Q. Gu, S. L. You, J. Am. Chem. Soc. 2019, 141, 9504–9510.
- 7
- 7aX. L. Li, J. Yang, M. C. Kozlowski, Org. Lett. 2001, 3, 1137–1140;
- 7bZ. B. Luo, et al., Angew. Chem. Int. Ed. 2002, 41, 4532–4535;
10.1002/1521-3773(20021202)41:23<4532::AID-ANIE4532>3.0.CO;2-5 CAS PubMed Web of Science® Google ScholarAngew. Chem. 2002, 114, 4714–4717;
- 7cC. A. Mulrooney, X. L. Li, E. S. DiVirgilio, M. C. Kozlowski, J. Am. Chem. Soc. 2003, 125, 6856–6857;
- 7dH. Egami, T. Katsuki, J. Am. Chem. Soc. 2009, 131, 6082–6083.
- 8
- 8aJ. Clayden, S. P. Fletcher, J. J. W. McDouall, S. J. M. Rowbottom, J. Am. Chem. Soc. 2009, 131, 5331–5343;
- 8bT. Wesch, F. R. Leroux, F. Colobert, Adv. Synth. Catal. 2013, 355, 2139–2144;
- 8cC. K. Hazra, Q. Dherbassy, J. Wencel-Delord, F. Colobert, Angew. Chem. Int. Ed. 2014, 53, 13871–13875; Angew. Chem. 2014, 126, 14091–14095;
- 8dY.-N. Ma, H.-Y. Zhang, S.-D. Yang, Org. Lett. 2015, 17, 2034–2037;
- 8eQ. Dherbassy, J.-P. Djukic, J. Wencel-Delord, F. Colobert, Angew. Chem. Int. Ed. 2018, 57, 4668–4672; Angew. Chem. 2018, 130, 4758–4762.
- 9
- 9aJ. L. Gustafson, D. Lim, S. J. Miller, Science 2010, 328, 1251–1255;
- 9bK. T. Barrett, S. J. Miller, J. Am. Chem. Soc. 2013, 135, 2963–2966;
- 9cG. Q. Li, H. Gao, C. Keene, M. Devonas, D. H. Ess, L. Kurti, J. Am. Chem. Soc. 2013, 135, 7414–7417;
- 9dK. Mori, Y. Ichikawa, M. Kobayashi, Y. Shibata, M. Yamanaka, T. Akiyama, J. Am. Chem. Soc. 2013, 135, 3964–3970;
- 9eA. Link, C. Sparr, Angew. Chem. Int. Ed. 2014, 53, 5458–5461; Angew. Chem. 2014, 126, 5562–5565;
- 9fY. H. Chen, D. J. Cheng, J. Zhang, Y. Wang, X. Y Liu, B. Tan, J. Am. Chem. Soc. 2015, 137, 15062–15065;
- 9gO. Quinonero, M. Jean, N. Vanthuyne, C. Roussel, D. Bonne, T. Constantieux, C. Bressy, X. Bugaut, J. Rodriguez, Angew. Chem. Int. Ed. 2016, 55, 1401–1405; Angew. Chem. 2016, 128, 1423–1427;
- 9hC. G. Yu, H. Huang, X. M. Li, Y. T. Zhang, W. Wang, J. Am. Chem. Soc. 2016, 138, 6956–6959;
- 9iY. B. Wang, S. C. Zheng, Y. M. Hu, B. Tan, Nat. Commun. 2017, 8, 15489;
- 9jY. D. Liu, X. Y. Wu, S. Li, L. Xue, C. H. Shan, Z. X. Zhao, H. L. Yan, Angew. Chem. Int. Ed. 2018, 57, 6491–6495; Angew. Chem. 2018, 130, 6601–6605;
- 9kD. Lotter, A. Castrogiovanni, M. Neuburger, C. Sparr, ACS Cent. Sci. 2018, 4, 656–660;
- 9lY. B. Wang, B. Tan, Acc. Chem. Res. 2018, 51, 534–547;
- 9mY. Kwon, J. Q. Li, J. P. Reid, J. M. Crawford, R. Jacob, M. S. Sigman, F. D. Toste, S. J. Miller, J. Am. Chem. Soc. 2019, 141, 6698–6705;
- 9nC. Ma, F. Jiang, F.-T. Sheng, Y. Jiao, G.-J. Mei, F. Shi, Angew. Chem. Int. Ed. 2019, 58, 3014–3020; Angew. Chem. 2019, 131, 3046–3052;
- 9oC.-S. Wang, T.-Z. Li, S.-J. Liu, Y.-C. Zhang, S. Deng, Y. Jiao, F. Shi, Chin. J. Chem. 2020, 38, 543–552;
- 9pC.-X. Ye, S. Chen, F. Han, X. Xie, S. Ivlev, K. N. Houk, E. Meggers, Angew. Chem. Int. Ed. 2020, 59, 13552–13556; Angew. Chem. 2020, 132, 13654–13658.
- 10
- 10aG. Bringmann, M. Breuning, S. Tasler, Synthesis 1999, 525–558;
- 10bG. Bringmann, D. Menche, Acc. Chem. Res. 2001, 34, 615–624;
- 10cG. Bringmann, J. Hinrichs, P. Henschel, J. Kraus, K. Peters, E. M. Peters, Eur. J. Org. Chem. 2002, 1096–1106.
- 11G. Bringmann, M. Breuning, H. Endress, D. Vitt, K. Peters, E. M. Peters, Tetrahedron 1998, 54, 10677–10690.
- 12
- 12aK. Mori, T. Itakura, T. Akiyama, Angew. Chem. Int. Ed. 2016, 55, 11642–11646; Angew. Chem. 2016, 128, 11814–11818;
- 12bJ. W. Zhang, J. Wang, Angew. Chem. Int. Ed. 2018, 57, 465–469; Angew. Chem. 2018, 130, 474–478.
- 13T. Shimada, Y. H. Cho, T. Hayashi, J. Am. Chem. Soc. 2002, 124, 13396–13397.
- 14A. Kina, H. Miki, Y. H. Cho, T. Hayashi, Adv. Synth. Catal. 2004, 346, 1728–1732.
- 15
- 15aK. Zhao, L. H. Duan, S. B. Xu, J. L. Jiang, Y. Fu, Z. H. Gu, Chem 2018, 4, 599–612;
- 15bB. Li, Z. Y. Chao, C. Y. Li, Z. H. Gu, J. Am. Chem. Soc. 2018, 140, 9400–9403;
- 15cS. B. Xu, K. Zhao, Z. H. Gu, Adv. Synth. Catal. 2018, 360, 3877–3883;
- 15dM. Q. Hou, R. X. Deng, Z. H. Gu, Org. Lett. 2018, 20, 5779–5783;
- 15eX. P. Xue, Z. H. Gu, Org. Lett. 2019, 21, 3942–3945;
- 15fQ. G. Li, M. K. Zhang, S. M. Zhan, Z. H. Gu, Org. Lett. 2019, 21, 6374–6377;
- 15gL. H. Duan, K. Zhao, Z. G. Wang, F. L. Zhang, Z. H. Gu, ACS Catal. 2019, 9, 9852–9858.
- 16
- 16aD. Zhu, Q. Liu, B. Luo, M. Chen, R. Pi, P. Huang, S. Wen, Adv. Synth. Catal. 2013, 355, 2172–2178;
- 16bD. Zhu, Z. Wu, B. Luo, Y. Du, P. Liu, Y. Chen, Y. Hu, P. Huang, S. Wen, Org. Lett. 2018, 20, 4815–4818.
- 17
- 17aK. Oshima, Y. Aoyama, J. Am. Chem. Soc. 1999, 121, 2315–2316;
- 17bL. Chan, M. S. Taylor, Org. Lett. 2011, 13, 3090–3093;
- 17cD. Lee, M. S. Taylor, J. Am. Chem. Soc. 2011, 133, 3724–3727;
- 17dD. Lee, M. S. Taylor, Synthesis 2012, 44, 3421–3431;
- 17eE. Dimitrijević, M. S. Taylor, ACS Catal. 2013, 3, 945–962;
- 17fC. A. McClary, M. S. Taylor, Carbohydr. Res. 2013, 381, 112–122;
- 17gM. S. Taylor, Acc. Chem. Res. 2015, 48, 295–305;
- 17hR.-Z. Li, H. Tang, L. Wan, X. Zhang, Z. Fu, J. Liu, S. Yang, D. Jia, D. Niu, Chem 2017, 3, 834–845;
- 17iR.-Z. Li, H. Tang, K. R. Yang, L.-Q. Wan, X. Zhang, J. Liu, Z. Fu, D. Niu, Angew. Chem. Int. Ed. 2017, 56, 7213–7217; Angew. Chem. 2017, 129, 7319–7323;
- 17jW. Shang, B. He, D. Niu, Carbohydr. Res. 2019, 474, 16–33.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.