Cell-Selective siRNA Delivery Using Glycosylated Dynamic Covalent Polymers Self-Assembled In Situ by RNA Templating
Nabila Laroui
Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
These authors contributed equally to this work.
Search for more papers by this authorMaëva Coste
Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
These authors contributed equally to this work.
Search for more papers by this authorDandan Su
Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, Université de Montpellier, ENSCM, CNRS, Place Eugène Bataillon, CC 047, 34095 Montpellier, France
Search for more papers by this authorDr. Lamiaa M. A. Ali
Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
Department of Biochemistry, Medical Research Institute, University of Alexandria, 21561 Alexandria, Egypt
Search for more papers by this authorDr. Yannick Bessin
Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
Search for more papers by this authorDr. Mihail Barboiu
Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, Université de Montpellier, ENSCM, CNRS, Place Eugène Bataillon, CC 047, 34095 Montpellier, France
Search for more papers by this authorDr. Magali Gary-Bobo
Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
Search for more papers by this authorCorresponding Author
Dr. Nadir Bettache
Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
Search for more papers by this authorCorresponding Author
Dr. Sébastien Ulrich
Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
Search for more papers by this authorNabila Laroui
Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
These authors contributed equally to this work.
Search for more papers by this authorMaëva Coste
Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
These authors contributed equally to this work.
Search for more papers by this authorDandan Su
Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, Université de Montpellier, ENSCM, CNRS, Place Eugène Bataillon, CC 047, 34095 Montpellier, France
Search for more papers by this authorDr. Lamiaa M. A. Ali
Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
Department of Biochemistry, Medical Research Institute, University of Alexandria, 21561 Alexandria, Egypt
Search for more papers by this authorDr. Yannick Bessin
Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
Search for more papers by this authorDr. Mihail Barboiu
Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, Université de Montpellier, ENSCM, CNRS, Place Eugène Bataillon, CC 047, 34095 Montpellier, France
Search for more papers by this authorDr. Magali Gary-Bobo
Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
Search for more papers by this authorCorresponding Author
Dr. Nadir Bettache
Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
Search for more papers by this authorCorresponding Author
Dr. Sébastien Ulrich
Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
Search for more papers by this authorDedicated to Professor Eric T. Kool on the occasion of his 60th birthday
Abstract
Dynamic covalent libraries enable exploring complex chemical systems from which bioactive assemblies can adaptively emerge through template effects. In this work, we studied dynamic covalent libraries made of complementary bifunctional cationic peptides, yielding a diversity of species from macrocycles to polymers. Although polymers are typically expressed only at high concentration, we found that siRNA acts as a template in the formation of dynamic covalent polymers at low concentration in a process guided by electrostatic binding. Using a glycosylated building block, we were able to show that this templated polymerization further translates into the multivalent presentation of carbohydrate ligands, which subsequently promotes cell uptake and even cell-selective siRNA delivery.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202014066-sup-0001-misc_information.pdf1.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aW. Zhang, Y. Jin, Dynamic Covalent Chemistry: Principles, Reactions, and Applications, Wiley-VCH, Weinheim, 2017;
10.1002/9781119075738 Google Scholar
- 1bY. H. Jin, C. Yu, R. J. Denman, W. Zhang, Chem. Soc. Rev. 2013, 42, 6634–6654;
- 1cF. B. L. Cougnon, J. K. M. Sanders, Acc. Chem. Res. 2012, 45, 2211–2221;
- 1dP. T. Corbett, J. Leclaire, L. Vial, K. R. West, J. L. Wietor, J. K. M. Sanders, S. Otto, Chem. Rev. 2006, 106, 3652–3711;
- 1eS. J. Rowan, S. J. Cantrill, G. R. L. Cousins, J. K. M. Sanders, J. F. Stoddart, Angew. Chem. Int. Ed. 2002, 41, 898–952; Angew. Chem. 2002, 114, 938–993.
- 2
- 2aJ. Solà, C. Jimeno, I. Alfonso, Chem. Commun. 2020, 56, 13273–13286;
- 2bJ. M. Lehn, Angew. Chem. Int. Ed. 2015, 54, 3276–3289; Angew. Chem. 2015, 127, 3326–3340;
- 2cJ. M. Lehn, Angew. Chem. Int. Ed. 2013, 52, 2836–2850; Angew. Chem. 2013, 125, 2906–2921;
- 2dJ. W. Li, P. Nowak, S. Otto, J. Am. Chem. Soc. 2013, 135, 9222–9239;
- 2eS. Otto, Acc. Chem. Res. 2012, 45, 2200–2210;
- 2fN. Giuseppone, Acc. Chem. Res. 2012, 45, 2178–2188;
- 2gR. A. R. Hunt, S. Otto, Chem. Commun. 2011, 47, 847–858.
- 3
- 3aJ. López-Andarias, J. Saarbach, D. Moreau, Y. Y. Cheng, E. Derivery, Q. Laurent, M. González-Gaitán, N. Winssinger, N. Sakai, S. Matile, J. Am. Chem. Soc. 2020, 142, 4784–4792;
- 3bY. Y. Cheng, L. L. Zong, J. Lopez-Andarias, E. Bartolami, Y. Okamoto, T. R. Ward, N. Sakai, S. Matile, Angew. Chem. Int. Ed. 2019, 58, 9522–9526; Angew. Chem. 2019, 131, 9622–9626;
- 3cS. Ulrich, Acc. Chem. Res. 2019, 52, 510–519.
- 4H. Jacobson, W. H. Stockmayer, J. Chem. Phys. 1950, 18, 1600–1606.
- 5
- 5aY. Liu, J. M. Lehn, A. K. H. Hirsch, Acc. Chem. Res. 2017, 50, 376–386;
- 5bF. García, M. M. J. Smulders, J. Polym. Sci. Part A 2016, 54, 3551–3577;
- 5cN. Roy, B. Bruchmann, J. M. Lehn, Chem. Soc. Rev. 2015, 44, 3786–3807.
- 6
- 6aG. S. Pulcu, N. S. Galenkamp, Y. J. Qing, G. Gasparini, E. Mikhailova, S. Matile, H. Bayley, J. Am. Chem. Soc. 2019, 141, 12444–12447;
- 6bG. Gasparini, E. K. Bang, G. Molinard, D. V. Tulumello, S. Ward, S. O. Kelley, A. Roux, N. Sakai, S. Matile, J. Am. Chem. Soc. 2014, 136, 6069–6074;
- 6cE. K. Bang, G. Gasparini, G. Molinard, A. Roux, N. Sakai, S. Matile, J. Am. Chem. Soc. 2013, 135, 2088–2091.
- 7C. Bouillon, D. Paolantoni, J. C. Rote, Y. Bessin, L. W. Peterson, P. Dumy, S. Ulrich, Chem. Eur. J. 2014, 20, 14705–14714.
- 8L. Cui, S. Vivona, B. R. Smith, S.-R. Kothapalli, J. Liu, X. Ma, Z. Chen, M. Taylor, P. H. Kierstead, J. M. J. Fréchet, S. S. Gambhir, J. Rao, J. Am. Chem. Soc. 2020, 142, 15575–15584.
- 9M. Surin, S. Ulrich, ChemistryOpen 2020, 9, 480–498.
- 10
- 10aY. Zhang, Y. Qi, S. Ulrich, M. Barboiu, O. Ramström, Mater. Chem. Front. 2020, 4, 489–506;
- 10bD. Su, M. Coste, A. Diaconu, M. Barboiu, S. Ulrich, J. Mater. Chem. B 2020, 8, 9385–9403>.
- 11Y. W. Dong, T. Z. Yu, L. Ding, E. Laurini, Y. Y. Huang, M. J. Zhang, Y. H. Weng, S. T. Lin, P. Chen, D. Marson, Y. F. Jiang, S. Giorgio, S. Pricl, X. X. Liu, P. Rocchi, L. Peng, J. Am. Chem. Soc. 2018, 140, 16264–16274.
- 12
- 12aE. Bartolami, Y. Bessin, V. Gervais, P. Dumy, S. Ulrich, Angew. Chem. Int. Ed. 2015, 54, 10183–10187; Angew. Chem. 2015, 127, 10321–10325;
- 12bE. Bartolami, Y. Bessin, N. Bettache, M. Gary-Bobo, M. Garcia, P. Dumy, S. Ulrich, Org. Biomol. Chem. 2015, 13, 9427–9438.
- 13P. Evenou, J. Rossignol, G. Pembouong, A. Gothland, D. Colesnic, R. Barbeyron, S. Rudiuk, A. G. Marcelin, M. Menand, D. Baigl, V. Calvez, L. Bouteiller, M. Sollogoub, Angew. Chem. Int. Ed. 2018, 57, 7753–7758; Angew. Chem. 2018, 130, 7879–7884.
- 14X. X. Liu, J. H. Zhou, T. Z. Yu, C. Chen, Q. Cheng, K. Sengupta, Y. Y. Huang, H. T. Li, C. Liu, Y. Wang, P. Posocco, M. H. Wang, Q. Cui, S. Giorgio, M. Fermeglia, F. Q. Qu, S. Pricl, Y. H. Shi, Z. C. Liang, P. Rocchi, J. J. Rossi, L. Peng, Angew. Chem. Int. Ed. 2014, 53, 11822–11827; Angew. Chem. 2014, 126, 12016–12021.
- 15J. Zhou, L. Sun, L. P. Wang, Y. C. Liu, J. Y. Li, J. Y. Li, J. Li, H. H. Yang, Angew. Chem. Int. Ed. 2019, 58, 5236–5240; Angew. Chem. 2019, 131, 5290–5294.
- 16
- 16aA. Kohata, P. K. Hashim, K. Okuro, T. Aida, J. Am. Chem. Soc. 2019, 141, 2862–2866;
- 16bP. K. Hashim, K. Okuro, S. Sasaki, Y. Hoashi, T. Aida, J. Am. Chem. Soc. 2015, 137, 15608–15611.
- 17L. East, C. M. Isacke, Biochim. Biophys. Acta Gen. Subj. 2002, 1572, 364–386.
- 18L. L. Kiessling, J. E. Gestwicki, L. E. Strong, Angew. Chem. Int. Ed. 2006, 45, 2348–2368; Angew. Chem. 2006, 118, 2408–2429.
- 19
- 19aM. Gary-Bobo, Y. Mir, C. Rouxel, D. Brevet, I. Basile, M. Maynadier, O. Vaillant, O. Mongin, M. Blanchard-Desce, A. Morere, M. Garcia, J. O. Durand, L. Raehm, Angew. Chem. Int. Ed. 2011, 50, 11425–11429; Angew. Chem. 2011, 123, 11627–11631;
- 19bD. Brevet, M. Gary-Bobo, L. Raehm, S. Richeter, O. Hocine, K. Amro, B. Loock, P. Couleaud, C. Frochot, A. Morere, P. Maillard, M. Garcia, J. O. Durand, Chem. Commun. 2009, 1475–1477.
- 20L. Dutot, P. Lécorché, F. Burlina, R. Marquant, V. Point, S. Sagan, G. Chassaing, J.-M. Mallet, S. Lavielle, J. Chem. Biol. 2010, 3, 51–65.
10.1007/s12154-009-0031-9 Google Scholar
- 21
- 21aI. Gallego, A. Rioboo, J. J. Reina, B. Diaz, A. Canales, F. J. Canada, J. Guerra-Varela, L. Sanchez, J. Montenegro, ChemBioChem 2019, 20, 1400–1409;
- 21bP. Morelli, E. Bartolami, N. Sakai, S. Matile, Helv. Chim. Acta 2018, 101, e1700266.
- 22C. Bouillon, Y. Bessin, F. Poncet, M. Gary-Bobo, P. Dumy, M. Barboiu, N. Bettache, S. Ulrich, J. Mater. Chem. B 2018, 6, 7239–7246.
- 23The N/P ratio corresponds to the total number of cationic guanidinium groups in solution divided by the number of phosphodiester groups brought by the siRNA.
- 24S. Chu, C. Tang, C. H. Yin, Biomaterials 2015, 52, 229–239.
- 25J. Gilleron, W. Querbes, A. Zeigerer, A. Borodovsky, G. Marsico, U. Schubert, K. Manygoats, S. Seifert, C. Andree, M. Stoter, H. Epstein-Barash, L. G. Zhang, V. Koteliansky, K. Fitzgerald, E. Fava, M. Bickle, Y. Kalaidzidis, A. Akinc, M. Maier, M. Zerial, Nat. Biotechnol. 2013, 31, 638-U102.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.