Confinement-Driven Enantioselectivity in 3D Porous Chiral Covalent Organic Frameworks
Bang Hou
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 China
These authors contributed equally to this work.
Search for more papers by this authorShi Yang
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 China
These authors contributed equally to this work.
Search for more papers by this authorKuiwei Yang
Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576 Singapore, Singapore
Search for more papers by this authorXing Han
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorXianhui Tang
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorCorresponding Author
Prof. Yan Liu
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorCorresponding Author
Prof. Jianwen Jiang
Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576 Singapore, Singapore
Search for more papers by this authorCorresponding Author
Prof. Yong Cui
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorBang Hou
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 China
These authors contributed equally to this work.
Search for more papers by this authorShi Yang
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 China
These authors contributed equally to this work.
Search for more papers by this authorKuiwei Yang
Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576 Singapore, Singapore
Search for more papers by this authorXing Han
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorXianhui Tang
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorCorresponding Author
Prof. Yan Liu
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorCorresponding Author
Prof. Jianwen Jiang
Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576 Singapore, Singapore
Search for more papers by this authorCorresponding Author
Prof. Yong Cui
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorAbstract
3D covalent organic frameworks (COFs) with well-defined porous channels are shown to be capable of inducing chiral molecular catalysts from non-enantioselective to highly enantioselective in catalyzing organic transformations. By condensations of a tetrahedral tetraamine and two linear dialdehydes derived from enantiopure 1,1′-binaphthol (BINOL), two chiral 3D COFs with a 9-fold or 11-fold interpenetrated diamondoid framework are prepared. Enhanced Brønsted acidity was observed for the chiral BINOL units that are uniformly distributed within the tubular channels compared to the non-immobilized acids. This facilitates the Brønsted acid catalysis of cyclocondensation of aldehydes and anthranilamides to produce 2,3-dihydroquinazolinones. DFT calculations show the COF catalyst provides preferential secondary interactions between the substrate and framework to induce enantioselectivities that are not achievable in homogeneous systems.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202013926-sup-0001-misc_information.pdf4.3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aR. Noyori, I. Tomino, Y. Tanimoto, J. Am. Chem. Soc. 1979, 101, 3129;
- 1bR. Noyori, I. Tomino, Y. Tanimoto, M. Nishizawa, J. Am. Chem. Soc. 1979, 101, 5843;
- 1cJ. M. Brunel, Chem. Rev. 2005, 105, 857.
- 2
- 2aB. D. Chapsal, Z. Hua, I. Ojima, Tetrahedron: Asymmetry 2006, 17, 642;
- 2bK. Yasumoto, T. Kano, K. J. Maruoka, Org. Chem. 2020, 85, 10232;
- 2cY. Liu, I. D. Gridnev, W. Zhang, Angew. Chem. Int. Ed. 2014, 53, 1901; Angew. Chem. 2014, 126, 1932.
- 3
- 3aL. Pu, Acc. Chem. Res. 2012, 45, 150;
- 3bH. L. Liu, H. P. Zhu, X. L. Hou, L. Pu, Org. Lett. 2010, 12, 4172.
- 4
- 4aS. Zhang, Y. Wang, F. Meng, C. Dai, Y. Cheng, C. Zhu, Chem. Commun. 2015, 51, 9014;
- 4bH. Maeda, Y. Bando, K. Shimomura, I. Yamada, M. Naito, K. Nobusawa, H. Tsumatori, T. Kawai, J. Am. Chem. Soc. 2011, 133, 9266.
- 5
- 5aY. Chen, S. Yekta, A. K. Yudin, Chem. Rev. 2003, 103, 3155;
- 5bR. Alam, C. Diner, S. Jonker, L. Eriksson, K. J. Szabó, Angew. Chem. Int. Ed. 2016, 55, 14417; Angew. Chem. 2016, 128, 14629.
- 6
- 6aK. Matsui, S. Takizawa, H. Sasai, J. Am. Chem. Soc. 2005, 127, 3680;
- 6bJ. M. Wieting, T. J. Fisher, A. G. Schafer, M. D. Visco, J. C. Gallucci, A. E. Mattson, Eur. J. Org. Chem. 2015, 525;
- 6cY. Zhang, N. Li, B. Qu, S. Ma, H. Lee, N. C. Gonnella, J. Wang, Org. Lett. 2013, 15, 1710.
- 7
- 7aW. Y. Han, J. Zuo, X. M. Zhang, W. C. Yuan, Tetrahedron 2013, 69, 537;
- 7bL. Bayeh, P. Q. Le, U. K. Tambar, Nature 2017, 547, 196.
- 8D. J. Gorin, B. D. Sherry, F. D. Toste, Chem. Rev. 2008, 108, 3351.
- 9
- 9aA. P. Côté, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, O. M. Yaghi, Science 2005, 310, 1166;
- 9bC. S. Diercks, O. M. Yaghi, Science 2015, 355, 6328.
- 10
- 10aS. Y. Ding, W. Wang, Chem. Soc. Rev. 2013, 42, 548;
- 10bT. Ma, E. A. Kapustin, S. X. Yin, L. Liang, Z. Zhou, J. Niu, X. Wang, Science 2018, 361, 48;
- 10cX. Han, C. Yuan, B. Hou, L. Liu, H. Li, Y. Liu, Y. Cui, Chem. Soc. Rev. 2020, 49, 6248;
- 10dJ. Dong, X. Han, Y. Liu, H. Li, Y. Cui, Angew. Chem. Int. Ed. 2020, 59, 13722; Angew. Chem. 2020, 132, 13826.
- 11
- 11aH. Furukawa, O. M. Yaghi, J. Am. Chem. Soc. 2009, 131, 8875;
- 11bH. Fan, A. Mundstock, A. Feldhoff, A. Knebel, J. Gu, H. Meng, J. Caro, J. Am. Chem. Soc. 2018, 140, 10094;
- 11cP. Das, S. K. Mandal, Chem. Mater. 2019, 31, 1584;
- 11dJ. Huang, X. Han, S. Yang, Y. Cao, C. Yuan, Y. Liu, J. Wang, Y. Cui, J. Am. Chem. Soc. 2019, 141, 8996.
- 12
- 12aS. DAlapati, S. Jin, J. Gao, Y. Xu, A. Nagai, D. Jiang, J. Am. Chem. Soc. 2013, 135, 17310;
- 12bG. Lin, H. Ding, D. Yuan, B. Wang, C. Wang, J. Am. Chem. Soc. 2016, 138, 3302;
- 12cS. Y. Ding, M. Dong, Y. W. Wang, Y. T. Chen, H. Z. Wang, C. Y. Su, W. Wang, J. Am. Chem. Soc. 2016, 138, 3031;
- 12dL. Ascherl, E. W. Evans, J. Gorman, S. Orsborne, D. Bessinger, T. Bein, R. H. Friend, F. Auras, J. Am. Chem. Soc. 2019, 141, 15693;
- 12eS. Jhulki, A. M. Evans, X. L. Hao, M. W. Cooper, C. H. Feriante, J. Leisen, H. Li, D. Lam, M. C. Hersam, S. Barlow, J. L. Brédas, W. R. Dichtel, S. R. Marder, J. Am. Chem. Soc. 2020, 142, 783.
- 13
- 13aS. Y. Ding, J. Gao, Q. Wang, Y. Zhang, W. G. Song, C. Y. Su, W. Wang, J. Am. Chem. Soc. 2011, 133, 19816;
- 13bW. Chen, Y. Tang, B. Aguila, Y. Pan, A. Zheng, Z. Yang, L. Wojtas, S. Ma, F. S. Xiao, Matter 2020, 2, 416;
- 13cY. Wan, L. Wang, H. Xu, X. Wu, J. Yang, J. Am. Chem. Soc. 2020, 142, 4508;
- 13dS. Lu, Y. Hu, S. Wan, R. McCaffrey, Y. Jin, H. Gu, W. Zhang, J. Am. Chem. Soc. 2017, 139, 17082;
- 13eX. Wang, L. Chen, S. Y. Chong, M. A. Little, Y. Wu, W. H. Zhu, R. Clowes, Y. Yan, M. A. Zwijnenburg, R. S. Sprick, A. I. Cooper, Nat. Chem. 2018, 10, 1180;
- 13fX. Wu, X. Han, Y. Liu, Y. Cui, J. Am. Chem. Soc. 2018, 140, 16124;
- 13gX. Kang, X. Han, C. Yuan, C. Cheng, Y. Liu, Y. Cui, J. Am. Chem. Soc. 2020, 142, 16346;
- 13hX. Han, Q. Xia, J. Huang, Y. Liu, C. Tan, Y. Cui, J. Am. Chem. Soc. 2017, 139, 8693.
- 14
- 14aQ. Fang, J. Wang, S. Gu, R. B. Kaspar, Z. Zhuang, J. Zheng, H. Guo, S. Qiu, Y. Yan, J. Am. Chem. Soc. 2015, 137, 8352;
- 14bS. Bhunia, K. A. Deo, A. K. Gahawar, Adv. Funct. Mater. 2020, 30, 2002046;
- 14cC. Wang, H. Liu, S. Liu, Z. Wang, J. Zhang, Front. Chem. 2020, 8, 488.
- 15
- 15aH. L. Qian, C. X. Yang, X. P. Yan, Nat. Commun. 2016, 7, 12104;
- 15bX. Han, J. Huang, C. Yuan, Y. Liu, Y. Cui, J. Am. Chem. Soc. 2018, 140, 892;
- 15cC. Yuan, X. Wu, R. Gao, X. Han, Y. Liu, Y. Long, Y. Cui, J. Am. Chem. Soc. 2019, 141, 20187.
- 16X. Wu, X. Han, Q. Xu, Y. Liu, C. Yuan, S. Yang, Y. Liu, J. Jiang, Y. Cui, J. Am. Chem. Soc. 2019, 141, 7081.
- 17
- 17aH. Xu, J. Gao, D. Jiang, Nat. Chem. 2015, 7, 905;
- 17bH. Xu, S. Ding, W. An, H. Wu, W. Wang, J. Am. Chem. Soc. 2016, 138, 11489;
- 17cX. Wang, X. Han, J. Zhang, X. Wu, Y. Liu, Y. Cui, J. Am. Chem. Soc. 2016, 138, 12332;
- 17dJ. Zhang, X. Han, X. Wu, Y. Liu, Y. Cui, J. Am. Chem. Soc. 2017, 139, 8277;
- 17eS. Zhang, Y. Zheng, H. An, B. Aguila, C. X. Yang, Y. Dong, W. Xie, P. Cheng, Z. Zhang, Y. Chen, S. Ma, Angew. Chem. Int. Ed. 2018, 57, 16754; Angew. Chem. 2018, 130, 16996;
- 17fH. C. Ma, C. C. Zhao, G. J. Chen, Y. B. Dong, Nat. Commun. 2019, 10, 3368;
- 17gL. K. Wang, J. J. Zhou, Y. B. Lan, S. Y. Ding, W. Yu, W. Wang, Angew. Chem. Int. Ed. 2019, 58, 9443; Angew. Chem. 2019, 131, 9543.
- 18C. Tan, K. Yang, J. Dong, Y. Liu, J. Jiang, Y. Cui, J. Am. Chem. Soc. 2019, 141, 17685.
- 19
- 19aD. Huang, X. Li, F. Xu, L. Li, X. Lin, ACS Catal. 2013, 3, 2244;
- 19bX. Cheng, S. Vellalath, R. Goddard, B. List, J. Am. Chem. Soc. 2008, 130, 15786.
- 20C. Qian, Q. Y. Qi, G. F. Jiang, F. Z. Cui, Y. Tian, X. Zhao, J. Am. Chem. Soc. 2017, 139, 6736.
- 21
- 21aC. Walling, J. Am. Chem. Soc. 1950, 72, 1164;
- 21bK. Kaupmees, N. Tolstoluzhsky, S. Raja, M. Rueping, I. Leito, Angew. Chem. Int. Ed. 2013, 52, 11569; Angew. Chem. 2013, 125, 11783.
- 22
- 22aW. Gong, X. Chen, H. Jiang, D. Chu, Y. Cui, Y. Liu, J. Am. Chem. Soc. 2019, 141, 7498;
- 22bX. Chen, H. Jiang, X. Li, B. Hou, W. Gong, X. Wu, X. Han, F. Zheng, Y. Liu, J. Jiang, Y. Cui, Angew. Chem. Int. Ed. 2019, 58, 14748; Angew. Chem. 2019, 131, 14890.
- 23
- 23aM. Zheng, Y. Liu, C. Wang, S. Liu, W. Lin, Chem. Sci. 2012, 3, 2623;
- 23bH. Jiang, W. Zhang, X. Kang, Z. Cao, X. Chen, Y. Liu, Y. Cui, J. Am. Chem. Soc. 2020, 142, 9642.
- 24
- 24aA. J. Kirby, Angew. Chem. Int. Ed. Engl. 1996, 35, 706; Angew. Chem. 1996, 108, 770;
- 24bY. Murakami, J.-i. Kikuchi, Y. Hisaeda, O. Hayashida, Chem. Rev. 1996, 96, 721.
- 25
- 25aX. Zhang, A. Kormos, J. Zhang, Org. Lett. 2017, 19, 6072;
- 25bB. Zhang, L. Shi, R. Guo, Catal. Lett. 2015, 145, 1718;
- 25cC. Monterde, R. Navarro, M. Iglesias, F. Sanchez, J. Catal. 2019, 377, 609.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.