Adaptive Chirality of an Achiral Cucurbit[8]uril-Based Supramolecular Organic Framework for Chirality Induction in Water
Yawen Li
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorQingfang Li
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Xiaran Miao
Shanghai Synchrotron Radiation Facility of Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorChunyan Qin
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069 P. R. China
Search for more papers by this authorDr. Dake Chu
Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Liping Cao
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069 P. R. China
State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorYawen Li
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorQingfang Li
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Xiaran Miao
Shanghai Synchrotron Radiation Facility of Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorChunyan Qin
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069 P. R. China
Search for more papers by this authorDr. Dake Chu
Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Liping Cao
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069 P. R. China
State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorAbstract
Chiral framework materials have been developed for many applications including chiral recognition, chiral separation, asymmetric catalysis, and chiroptical materials. Herein, we report that an achiral cucurbit[8]uril-based supramolecular organic framework (SOF-1) with the dynamic rotational conformation of tetraphenylethene units can exhibit adaptive chirality to produce M-SOF-1 or P-SOF-1 with mirror-image circular dichroism (CD) with gabs≈±10−4 and circularly polarized luminescence (CPL) with glum≈±10−4 induced by L-/D-phenylalanine in water, respectively. The chirality induction in CD (gabs≈−10−4) and CPL (glum≈−10−4) of P-SOF-1 from achiral SOF-1 can be presented by using a small amount of adenosine-5′-triphosphate disodium (ATP) or adenosine-5′-diphosphate disodium (ADP) (only 0.4 equiv) in water. Furthermore, the adaptive chirality of SOF-1 can be used to determine dipeptide sequences (e.g., Phe-Ala and Ala-Phe) and distinguish polypeptides/proteins (e.g., somatostatin and human insulin) with characteristic CD spectra. Therefore, achiral SOF-1 as an ideal chiroptical platform with adaptive chirality may be applied to determine the enantiopurity of amino acids (e.g., L-/D-phenylalanine), develop aqueous CPL materials, and distinguish biological chiral macromolecules (e.g., peptides/proteins) via chirality induction in water.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202012681-sup-0001-misc_information.pdf8.6 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aX. Han, C. Yuan, B. Hou, L. Liu, H. Li, Y. Liu, Y. Cui, Chem. Soc. Rev. 2020, 49, 6248–6272;
- 1bX.-J. Hu, G. Huang, S. Zhang, Z.-B. Fang, R. Cao, Chem. Commun. 2020, 56, 7459–7462;
- 1cB. Shen, Y. Kim, M. Lee, Adv. Mater. 2020, 32, 1905669.
- 2
- 2aJ. Y. Chan, H. Zhang, Y. Nolvachai, Y. Hu, H. Zhu, M. Forsyth, Q. Gu, D. E. Hoke, X. Zhang, P. J. Marriot, H. Wang, Angew. Chem. Int. Ed. 2018, 57, 17130–17134; Angew. Chem. 2018, 130, 17376–17380;
- 2bT. Zhao, J. Han, X. Jin, Y. Liu, M. Liu, P. Duan, Angew. Chem. Int. Ed. 2019, 58, 4978–4982; Angew. Chem. 2019, 131, 5032–5036.
- 3
- 3aS. Lee, E. A. Kapustin, O. M. Yaghi, Science 2016, 353, 808–811;
- 3bR. E. Morris, X. Bu, Nat. Chem. 2010, 2, 353–361;
- 3cL. Ma, J. M. Falkowski, C. Abney, W. Lin, Nat. Chem. 2010, 2, 838–846.
- 4
- 4aH. Xu, J. Gao, D. Jiang, Nat. Chem. 2015, 7, 905–912;
- 4bJ. Zhang, X. Han, X. Wu, Y. Liu, Y. Cui, J. Am. Chem. Soc. 2017, 139, 8277–8285;
- 4cL. K. Wang, J. J. Zhou, Y. B. Lan, S. Y. Ding, W. Yu, W. Wang, Angew. Chem. Int. Ed. 2019, 58, 9443–9447; Angew. Chem. 2019, 131, 9543–9547.
- 5
- 5aS. Das, S. Xu, T. Ben, S. Qiu, Angew. Chem. Int. Ed. 2018, 57, 8629–8633; Angew. Chem. 2018, 130, 8765–8769;
- 5bM. M. Wanderley, C. Wang, C.-D. Wu, W. Lin, J. Am. Chem. Soc. 2012, 134, 9050–9053.
- 6
- 6aJ. Guo, Y. Zhang, Y. Zhu, C. Long, M. Zhao, M. He, X. Zhang, J. Lv, B. Han, Z. Tang, Angew. Chem. Int. Ed. 2018, 57, 6873–6877; Angew. Chem. 2018, 130, 6989–6993;
- 6bM. C. Das, Q. Guo, Y. He, J. Kim, C.-G. Zhao, K. Hong, S. Xiang, Z. Zhang, K. M. Thomas, R. Krishna, B. Chen, J. Am. Chem. Soc. 2012, 134, 8703–8710;
- 6cS.-M. Xie, Z.-J. Zhang, Z.-Y. Wang, L.-M. Yuan, J. Am. Chem. Soc. 2011, 133, 11892–11895.
- 7
- 7aX. Chen, H. Jiang, X. Li, B. Hou, W. Gong, X. Wu, X. Han, F. Zheng, Y. Liu, J. Jiang, Y. Cui, Angew. Chem. Int. Ed. 2019, 58, 14748–14757; Angew. Chem. 2019, 131, 14890–14899;
- 7bS. C. J. Zhang, T. Wu, P. Feng, X. Bu, J. Am. Chem. Soc. 2008, 130, 12882–12883;
- 7cP. Wu, C. He, J. Wang, X. Peng, X. Li, Y. An, C. Duan, J. Am. Chem. Soc. 2012, 134, 14991–14999.
- 8T. Sawano, N. C. Thacker, Z. Lin, A. R. McIsaac, W. Lin, J. Am. Chem. Soc. 2015, 137, 12241–12248.
- 9C.-Y. Sun, C. Qin, C.-G. Wang, Z.-M. Su, S. Wang, X.-L. Wang, G.-S. Yang, K.-Z. Shao, Y.-Q. Lan, E.-B. Wang, Adv. Mater. 2011, 23, 5629–5632.
- 10
- 10aL. Hu, K. Li, W. Shang, X. Zhu, M. Liu, Angew. Chem. Int. Ed. 2020, 59, 4953–4958; Angew. Chem. 2020, 132, 4983–4988;
- 10bW. Shang, X. Zhu, T. Liang, C. Du, L. Hu, T. Li, M. Liu, Angew. Chem. Int. Ed. 2020, 59, 12811–12816; Angew. Chem. 2020, 132, 12911–12916.
- 11T. Kitao, Y. Nagasaka, M. Karasawa, T. Eguchi, N. Kimizuka, K. Ishii, T. Yamada, T. Uemura, J. Am. Chem. Soc. 2019, 141, 19565–19569.
- 12D. Philp, J. F. Stoddart, Angew. Chem. Int. Ed. Engl. 1996, 35, 1154–1196; Angew. Chem. 1996, 108, 1242–1286.
- 13
- 13aM. Liu, L. Zhang, T. Wang, Chem. Rev. 2015, 115, 7304–7397;
- 13bH. Q. Peng, L. Y. Niu, Y. Z. Chen, L. Z. Wu, C. H. Tung, Q. Z. Yang, Chem. Rev. 2015, 115, 7502–7542;
- 13cJ. Tian, H. Wang, D.-W. Zhang, Y. Liu, Z.-T. Li, Natl. Sci. Rev. 2017, 4, 426–436;
- 13dJ. Tian, L. Zhang, H. Wang, D.-W. Zhang, Z.-T. Li, Supramol. Chem. 2016, 28, 769–783.
- 14
- 14aZ.-T. Li, Beilstein J. Org. Chem. 2015, 11, 2057–2071;
- 14bH. Wang, D.-W. Zhang, X. Zhao, Z.-T. Li, Acta Chim. Sin. (Engl. Ed.) 2015, 73, 471–479;
- 14cJ. Tian, L. Chen, D.-W. Zhang, Y. Liu, Z.-T. Li, Chem. Commun. 2016, 52, 6351–6362.
- 15
- 15aK.-D. Zhang, J. Tian, D. Hanifi, Y. Zhang, A. C.-H. Sue, T.-Y. Zhou, L. Zhang, X. Zhao, Y. Liu, Z.-T. Li, J. Am. Chem. Soc. 2013, 135, 17913–17918;
- 15bJ.-L. Lin, Z.-K. Wang, Z.-Y. Xu, L. Wei, Y.-C. Zhang, H. Wang, D.-W. Zhang, W. Zhou, Y.-B. Zhang, Y. Liu, Z.-T. Li, J. Am. Chem. Soc. 2020, 142, 3577–3582;
- 15cJ. Tian, Z. Y. Xu, D. W. Zhang, H. Wang, S. H. Xie, D. W. Xu, Y. H. Ren, H. Wang, Y. Liu, Z. T. Li, Nat. Commun. 2016, 7, 11580;
- 15dJ. Tian, T.-Y. Zhou, S.-C. Zhang, S. Aloni, M. V. Altoe, S.-H. Xie, H. Wang, D.-W. Zhang, X. Zhao, Y. Liu, Z.-T. Li, Nat. Commun. 2014, 5, 5574;
- 15eX.-F. Li, S.-B. Yu, B. Yang, J. Tian, H. Wang, D.-W. Zhang, Y. Liu, Z.-T. Li, Sci. China Mater. 2018, 61, 830–835;
- 15fJ. Tian, C. Yao, W. L. Yang, L. Zhang, D. W. Zhang, H. Wang, F. Zhang, Y. Liu, Z. T. Li, Chin. Chem. Lett. 2017, 28, 798–806;
- 15gM. Pfeffermann, R. Dong, R. Graf, W. Zajaczkowski, T. Gorelik, W. Pisula, A. Narita, K. Müllen, X. Feng, J. Am. Chem. Soc. 2015, 137, 14525–14532.
- 16
- 16aY. Li, Y. Dong, X. Miao, Y. Ren, B. Zhang, P. Wang, Y. Yu, B. Li, L. Isaacs, L. Cao, Angew. Chem. Int. Ed. 2018, 57, 729–733; Angew. Chem. 2018, 130, 737–741;
- 16bY. Li, C. Qin, Q. Li, P. Wang, X. Miao, H. Jin, W. Ao, L. Cao, Adv. Opt. Mater. 2020, 8, 1902154.
- 17
- 17aM. Hu, H.-T. Feng, Y.-X. Yuan, Y. S. Zheng, B. Z. Tang, Coord. Chem. Rev. 2020, 416, 213329;
- 17bJ. Li, J. Wang, H. Li, N. Song, D. Wang, B. Z. Tang, Chem. Soc. Rev. 2020, 49, 1144–1172.
- 18
- 18aY. Shi, G. Yin, Z. Yan, P. Sang, M. Wang, R. Brzozowski, P. Eswara, L. Wojtas, Y. Zheng, X. Li, J. Cai, J. Am. Chem. Soc. 2019, 141, 12697–12706;
- 18bQ. Ye, D. Zhu, L. Xu, X. Lu, Q. Lu, J. Mater. Chem. C 2016, 4, 1497–1503;
- 18cH. Li, J. Cheng, H. Deng, E. Zhao, B. Shen, J. W. Y. Lam, K. S. Wong, H. Wu, B. S. Li, B. Z. Tang, J. Mater. Chem. C 2015, 3, 2399–2404.
- 19J. M. Berg, J. L. Tymoczko, G. J. Gatto, L. Stryer, Biochemistry, 8th ed., W. H. Freeman and Company, New York, 2015.
- 20
- 20aX. Wang, F. Jia, L. P. Yang, H. Zhou, W. Jiang, Chem. Soc. Rev. 2020, 49, 4176–4188;
- 20bA. R. A. Palmans, E. W. Meijer, Angew. Chem. Int. Ed. 2007, 46, 8948–8968; Angew. Chem. 2007, 119, 9106–9126;
- 20cJ.-M. Lehn, Angew. Chem. Int. Ed. 2015, 54, 3276–3289; Angew. Chem. 2015, 127, 3326–3340;
- 20dH. Zhu, Q. Li, Z. Gao, H. Wang, B. Shi, Y. Wu, L. Shangguan, X. Hong, F. Wang, F. Huang, Angew. Chem. Int. Ed. 2020, 59, 10868–10872; Angew. Chem. 2020, 132, 10960–10964.
- 21
- 21aJ. B. Xiong, H. T. Feng, J. P. Sun, W. Z. Xie, D. Yang, M. H. Liu, Y. S. Zheng, J. Am. Chem. Soc. 2016, 138, 11469–11472;
- 21bH. Qu, Y. Wang, Z. Li, X. Wang, H. Fang, Z. Tian, X. Cao, J. Am. Chem. Soc. 2017, 139, 18142–18145.
- 22S.-Q. Xu, X. Zhang, C.-B. Nie, Z.-F. Pang, X.-N. Xu, X. Zhao, Chem. Commun. 2015, 51, 16417–16420.
- 23
- 23aY. Li, Y. Dong, L. Cheng, C. Qin, H. Nian, H. Zhang, Y. Yu, L. Cao, J. Am. Chem. Soc. 2019, 141, 8412–8415;
- 23bH. Duan, Y. Li, Q. Li, P. Wang, X. Liu, L. Cheng, Y. Yu, L. Cao, Angew. Chem. Int. Ed. 2020, 59, 10101–10110; Angew. Chem. 2020, 132, 10187–10196;
- 23cH. Nian, A. Li, Y. Li, L. Cheng, L. Wang, W. Xu, L. Cao, Chem. Commun. 2020, 56, 3195–3198.
- 24Deposition number 2020754 (1) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 25S. Lee, K. Y. Kim, S. H. Jung, J. H. Lee, M. Yamada, R. Sethy, T. Kawai, J. H. Jung, Angew. Chem. Int. Ed. 2019, 58, 18878–18882; Angew. Chem. 2019, 131, 19054–19058.
- 26
- 26aL. A. Logsdon, A. R. Urbach, J. Am. Chem. Soc. 2013, 135, 11414–11416;
- 26bL. A. Logsdon, C. L. Schardon, V. Ramalingam, S. K. Kwee, A. R. Urbach, J. Am. Chem. Soc. 2011, 133, 17087–17092;
- 26cG. Ghale, V. Ramalingam, A. R. Urbach, W. M. Nau, J. Am. Chem. Soc. 2011, 133, 7528–7535;
- 26dL. M. Heitmann, A. B. Taylor, P. J. Hart, A. R. Urbach, J. Am. Chem. Soc. 2006, 128, 12574–12581.
- 27F. Biedermann, W. M. Nau, Angew. Chem. Int. Ed. 2014, 53, 5694–5699; Angew. Chem. 2014, 126, 5802–5807.
- 28
- 28aG. Pescitelli, L. Di Bari, N. Berova, Chem. Soc. Rev. 2011, 40, 4603–4625;
- 28bC. Wolf, K. W. Bentley, Chem. Soc. Rev. 2013, 42, 5408–5424.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.