Rechargeable Aqueous Aluminum Organic Batteries
Jiangchun Chen
School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191 China
Search for more papers by this authorQiaonan Zhu
School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191 China
Search for more papers by this authorDr. Li Jiang
College of Optical and Electronic Technology, Jiliang University, Hangzhou, 310018 China
Search for more papers by this authorRongyang Liu
College of Optical and Electronic Technology, Jiliang University, Hangzhou, 310018 China
Search for more papers by this authorYan Yang
School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191 China
Search for more papers by this authorMengyao Tang
School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191 China
Search for more papers by this authorJiawei Wang
School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191 China
Search for more papers by this authorCorresponding Author
Prof. Hua Wang
School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191 China
Search for more papers by this authorCorresponding Author
Prof. Lin Guo
School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191 China
Search for more papers by this authorJiangchun Chen
School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191 China
Search for more papers by this authorQiaonan Zhu
School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191 China
Search for more papers by this authorDr. Li Jiang
College of Optical and Electronic Technology, Jiliang University, Hangzhou, 310018 China
Search for more papers by this authorRongyang Liu
College of Optical and Electronic Technology, Jiliang University, Hangzhou, 310018 China
Search for more papers by this authorYan Yang
School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191 China
Search for more papers by this authorMengyao Tang
School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191 China
Search for more papers by this authorJiawei Wang
School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191 China
Search for more papers by this authorCorresponding Author
Prof. Hua Wang
School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191 China
Search for more papers by this authorCorresponding Author
Prof. Lin Guo
School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191 China
Search for more papers by this authorAbstract
Aqueous aluminum-ion batteries (AABs) are regarded as promising next-generation energy storage devices, and the current reported cathodes for AABs mainly focused on inorganic materials which usually implement a typical Al3+ ions (de)insertion mechanism. However, the strong electrostatic forces between Al3+ and the host materials usually lead to sluggish kinetics, poor reversibility and inferior cycling stability. Herein, we employ an organic compound with redox-active moieties, phenazine (PZ), as the cathode material in AABs. Different from conventional inorganic materials confined by limited lattice spacing and rigid structure, the flexible organic molecules allow a large-size Al-complex co-intercalation through reversible redox active centers (-C=N-) of PZ. This co-intercalation behavior can effectively reduce desolvation penalty, and substantially lower the Coulombic repulsion during the ion (de)insertion process. Consequently, this organic cathode exhibits a high capacity and excellent cyclability, which exceeds those of most reported electrode materials for AABs. This work highlights the anion co-intercalation chemistry of redox-active organic materials, which is expected to boost the development of high-performance multivalent-ion battery systems.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202011144-sup-0001-misc_information.pdf1.6 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aX. Dong, L. Chen, J. Liu, S. Haller, Y. Wang, Y. Xia, Sci. Adv. 2016, 2, e1501038;
- 1bC. Yang, J. Chen, X. Ji, T. P. Pollard, X. Lu, C. J. Sun, S. Hou, Q. Liu, C. Liu, T. Qing, Y. Wang, O. Borodin, Y. Ren, K. Xu, C. Wang, Nature 2019, 569, 245–250;
- 1cY. Liang, Y. Jing, S. Gheytani, K. Y. Lee, P. Liu, A. Facchetti, Y. Yao, Nat. Mater. 2017, 16, 841–848;
- 1dM. Chen, W. Hua, J. Xiao, D. Cortie, W. Chen, E. Wang, Z. Hu, Q. Gu, X. Wang, S. Indris, S.-L. Chou, S.-X. Dou, Nat. Commun. 2019, 10, 1480.
- 2
- 2aQ. Zhao, L. Liu, J. Yin, J. Zheng, D. Zhang, J. Chen, L. A. Archer, Angew. Chem. Int. Ed. 2020, 59, 3048–3052; Angew. Chem. 2020, 132, 3072–3076;
- 2bD. J. Kim, D.-J. Yoo, M. T. Otley, A. Prokofjevs, C. Pezzato, M. Owczarek, S. J. Lee, J. W. Choi, J. F. Stoddart, Nat. Energy 2019, 4, 51–59;
- 2cF. Wu, H. Yang, Y. Bai, C. Wu, Adv. Mater. 2019, 31, 1806510;
- 2dK. Liang, L. Ju, S. Koul, A. Kushima, Y. Yang, Adv. Energy Mater. 2019, 9, 1802543.
- 3
- 3aH. Yang, H. Li, J. Li, Z. Sun, K. He, H. M. Cheng, F. Li, Angew. Chem. Int. Ed. 2019, 58, 11978–11996; Angew. Chem. 2019, 131, 12104–12124;
- 3bC. Wu, S. Gu, Q. Zhang, Y. Bai, M. Li, Y. Yuan, H. Wang, X. Liu, Y. Yuan, N. Zhu, F. Wu, H. Li, L. Gu, J. Lu, Nat. Commun. 2019, 10, 73;
- 3cH. Li, C. J. Firby, A. Y. Elezzabi, Joule 2019, 3, 2268–2278.
- 4
- 4aP. Wang, Z. Chen, H. Wang, Z. Ji, Y. Feng, J. Wang, J. Liu, M. Hu, J. Fei, W. Gan, Y. Huang, Energy Storage Mater. 2020, 25, 426–435;
- 4bV. Verma, S. Kumar, W. Manalastas, R. Satish, M. Srinivasan, Adv. Sustainable Syst. 2019, 3, 1800111.
- 5F. Wang, F. Yu, X. Wang, Z. Chang, L. Fu, Y. Zhu, Z. Wen, Y. Wu, W. Huang, ACS Appl. Mater. Interfaces 2016, 8, 9022–9029.
- 6
- 6aQ. Zhao, M. J. Zachman, W. I. Al Sadat, J. Zheng, L. F. Kourkoutis, L. Archer, Sci. Adv. 2018, 4, eaau8131;
- 6bS. He, J. Wang, X. Zhang, J. Chen, Z. Wang, T. Yang, Z. Liu, Y. Liang, B. Wang, S. Liu, L. Zhang, J. Huang, J. Huang, L. A. Dell, H. Yu, Adv. Funct. Mater. 2019, 29, 1905228.
- 7D. Chao, W. Zhou, F. Xie, C. Ye, H. Li, M. Jaroniec, S. Z. Qiao, Sci. Adv. 2020, 6, eaba4098.
- 8
- 8aY. Lu, J. Chen, Nat. Rev. Chem. 2020, 4, 127–142;
- 8bT. Sun, Z. J. Li, H. G. Wang, D. Bao, F. L. Meng, X. B. Zhang, Angew. Chem. Int. Ed. 2016, 55, 10662–10666; Angew. Chem. 2016, 128, 10820–10824;
- 8cM. Tang, S. Zhu, Z. Liu, C. Jiang, Y. Wu, H. Li, B. Wang, E. Wang, J. Ma, C. Wang, Chem 2018, 4, 2600–2614.
- 9H. Hong, J. Liu, H. Huang, C. Atangana Etogo, X. Yang, B. Guan, L. Zhang, J. Am. Chem. Soc. 2019, 141, 14764–14771.
- 10
- 10aK. W. Nam, H. Kim, Y. Beldjoudi, T. Kwon, D. J. Kim, J. F. Stoddart, J. Am. Chem. Soc. 2020, 142, 2541–2548;
- 10bK. V. Kravchyk, S. Wang, L. Piveteau, M. V. Kovalenko, Chem. Mater. 2017, 29, 4484–4492.
- 11
- 11aN. Patil, A. Mavrandonakis, C. Jérôme, C. Detrembleur, J. Palma, R. Marcilla, ACS Appl. Energy Mater. 2019, 2, 3035–3041;
- 11bL. Yan, C. Zhao, Y. Sha, Z. Li, T. Liu, M. Ling, S. Zhou, C. Liang, Nano Energy 2020, 73, 104766;
- 11cR. Cang, Y. Song, K. Ye, K. Zhu, J. Yan, J. Yin, G. Wang, D. Cao, J. Electroanal. Chem. 2020, 861, 113967.
- 12
- 12aG. Dai, Y. He, Z. Niu, P. He, C. Zhang, Y. Zhao, X. Zhang, H. Zhou, Angew. Chem. Int. Ed. 2019, 58, 9902–9906; Angew. Chem. 2019, 131, 10007–10011;
- 12bK. E. Scher, Extracellular Electron Transfer in in situ Petroleum Hydrocarbon Bioremediation, IntechOpen, Tulln, VIE, AT 2013;
- 12cA. Hollas, X. Wei, V. Murugesan, Z. Nie, B. Li, D. Reed, J. Liu, V. Sprenkle, W. Wang, Nat. Energy 2018, 3, 508–514.
- 13M. Lee, J. Hong, D. H. Seo, D. H. Nam, K. T. Nam, K. Kang, C. B. Park, Angew. Chem. Int. Ed. 2013, 52, 8322–8328; Angew. Chem. 2013, 125, 8480–8486.
- 14
- 14aC. Peng, G.-H. Ning, J. Su, G. Zhong, W. Tang, B. Tian, C. Su, D. Yu, L. Zu, J. Yang, M. F. Ng, Y.-S. Hu, Y. Yang, M. Armand, K. P. Loh, Nat. Energy 2017, 2, 17074;
- 14bZ. Tie, L. Liu, S. Deng, D. Zhao, Z. Niu, Angew. Chem. Int. Ed. 2020, 59, 4920–4924; Angew. Chem. 2020, 132, 4950–4954.
- 15
- 15aX. Dong, Z. Guo, Z. Guo, Y. Wang, Y. Xia, Joule 2018, 2, 902–913;
- 15bZ. Liu, Y. Huang, Y. Huang, Q. Yang, X. Li, Z. Huang, C. Zhi, Chem. Soc. Rev. 2020, 49, 180–232.
- 16
- 16aS. Lee, G. Kwon, K. Ku, K. Yoon, S. K. Jung, H. D. Lim, K. Kang, Adv. Mater. 2018, 30, 1704682;
- 16bJ. Lee, M. J. Park, Adv. Energy Mater. 2017, 7, 162279.
- 17
- 17aR. Zhao, H. Di, X. Hui, D. Zhao, R. Wang, C. Wang, L. Yin, Energy Environ. Sci. 2020, 13, 246–257;
- 17bC. Li, S. Dong, P. Wang, C. Wang, L. Yin, Adv. Energy Mater. 2019, 9, 1902352;
- 17cN. Patil, A. Aqil, F. Ouhib, S. Admassie, O. Inganas, C. Jerome, C. Detrembleur, Adv. Mater. 2017, 29, 1703373.
- 18J. Zhou, J. Chen, M. Chen, J. Wang, X. Liu, B. Wei, Z. Wang, J. Li, L. Gu, Q. Zhang, H. Wang, L. Guo, Adv. Mater. 2019, 31, 1807874.
- 19
- 19aH. Yang, Z. Chang, Y. Qiao, H. Deng, X. Mu, P. He, H. Zhou, Angew. Chem. Int. Ed. 2020, 59, 9377–9381; Angew. Chem. 2020, 132, 9463–9467;
- 19bN. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei, C. Chen, X. Liu, J. Chen, J. Am. Chem. Soc. 2016, 138, 12894–12901;
- 19cV. W. Lau, I. Moudrakovski, J. Yang, J. Zhang, Y. M. Kang, Angew. Chem. Int. Ed. 2020, 59, 4023–4034; Angew. Chem. 2020, 132, 4052–4063.
- 20Z. Luo, L. Liu, Q. Zhao, F. Li, J. Chen, Angew. Chem. Int. Ed. 2017, 56, 12561–12565; Angew. Chem. 2017, 129, 12735–12739.
- 21Y. Dong, S. Di, F. Zhang, X. Bian, Y. Wang, J. Xu, L. Wang, F. Cheng, N. Zhang, J. Mater. Chem. A 2020, 8, 3252–3261.
- 22J. Park, Z. L. Xu, G. Yoon, S. K. Park, J. Wang, H. Hyun, H. Park, J. Lim, Y. J. Ko, Y. S. Yun, K. Kang, Adv. Mater. 2020, 32, 1904411.
- 23L. Li, L. Liu, Z. Hu, Y. Lu, Q. Liu, S. Jin, Q. Zhang, S. Zhao, S.-L. Chou, Angew. Chem. Int. Ed. 2020, 59, 12917–12924; Angew. Chem. 2020, 132, 13017–13024.
- 24
- 24aD. Kundu, S. Hosseini Vajargah, L. Wan, B. Adams, D. Prendergast, L. F. Nazar, Energy Environ. Sci. 2018, 11, 881–892;
- 24bZ. Yu, H. Wang, X. Kong, W. Huang, Y. Tsao, D. G. Mackanic, K. Wang, X. Wang, W. Huang, S. Choudhury, Y. Zheng, C. V. Amanchukwu, S. T. Hung, Y. Ma, E. G. Lomeli, J. Qin, Y. Cui, Z. Bao, Nat. Energy 2020, 5, 526–533.
- 25Z. Lei, X. Chen, W. Sun, Y. Zhang, Y. Wang, Adv. Energy Mater. 2019, 9, 1801010.
- 26J. Hong, M. Lee, B. Lee, D. H. Seo, C. B. Park, K. Kang, Nat. Commun. 2014, 5, 5335.
- 27V. Shuster, S. Gambarotta, G. B. Nikiforov, P. H. M. Budzelaar, Organometallics 2013, 32, 2329–2335.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.