Probing Membrane Protein Association Using Concentration-Dependent Number and Brightness
Michael D. Paul
Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, 21218 USA
Search for more papers by this authorRandall Rainwater
Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218 USA
Search for more papers by this authorYi Zuo
Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218 USA
Search for more papers by this authorLuo Gu
Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218 USA
Search for more papers by this authorCorresponding Author
Prof. Kalina Hristova
Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218 USA
Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, 21218 USA
Search for more papers by this authorMichael D. Paul
Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, 21218 USA
Search for more papers by this authorRandall Rainwater
Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218 USA
Search for more papers by this authorYi Zuo
Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218 USA
Search for more papers by this authorLuo Gu
Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218 USA
Search for more papers by this authorCorresponding Author
Prof. Kalina Hristova
Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218 USA
Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, 21218 USA
Search for more papers by this authorAbstract
We introduce concentration-dependent number and brightness (cdN&B), a fluorescence fluctuation technique that can be implemented on a standard confocal microscope and can report on the thermodynamics of membrane protein association in the native plasma membrane. It uses transient transfection to enable measurements of oligomer size as a function of receptor concentration over a broad range, yielding the association constant. We discuss artifacts in cdN&B that are concentration-dependent and can distort the oligomerization curves, and we outline procedures that can correct for them. Using cdN&B, we characterize the association of neuropilin 1 (NRP1), a protein that plays a critical role in the development of the embryonic cardiovascular and nervous systems. We show that NRP1 associates into a tetramer in a concentration-dependent manner, and we quantify the strength of the association. This work demonstrates the utility of cdN&B as a powerful tool in biophysical chemistry.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202010049-sup-0001-misc_information.pdf600.1 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. A. Lemmon, J. Schlessinger, Cell 2010, 141, 1117–1134.
- 2W. Cho, R. V. Stahelin, Annu. Rev. Biophys. Biomol. Struct. 2005, 34, 119–151.
- 3C. D. Hanlon, D. J. Andrew, J. Cell Sci. 2015, 128, 3533–3542.
- 4G. C. Terstappen, A. Reggiani, Trends Pharmacol. Sci. 2001, 22, 23–26.
- 5J. Davey, Expert Opin. Ther. Targets 2004, 8, 165–170.
- 6Y. Arinaminpathy, E. Khurana, D. M. Engelman, M. B. Gerstein, Drug Discovery Today 2009, 14, 1130–1135.
- 7H. Yin, A. D. Flynn, Annu. Rev. Biomed. Eng. 2016, 18, 51.
- 8E. B. Pasquale, Cell 2008, 133, 38–52.
- 9M. D. Paul, K. Hristova, Cytokine Growth Factor Rev. 2019, 49, 23–31.
- 10R. Trenker, N. Jura, Curr. Opin. Cell Biol. 2020, 63, 174–185.
- 11H. Hong, N. H. Joh, J. U. Bowie, L. K. Tamm, Methods Enzymol. 2009, 455, 213–236.
- 12A. M. Seddon, P. Curnow, P. J. Booth, Biochim. Biophys. Acta Biomembr. 2004, 1666, 105–117.
- 13F. Hagn, M. Etzkorn, T. Raschle, G. Wagner, J. Am. Chem. Soc. 2013, 135, 1919–1925.
- 14M. A. Digman, R. Dalal, A. F. Horwitz, E. Gratton, Biophys. J. 2008, 94, 2320–2332.
- 15M. A. Digman, P. W. Wiseman, C. Choi, A. R. Horwitz, E. Gratton, Proc. Natl. Acad. Sci. USA 2009, 106, 2170–2175.
- 16C. Hellriegel, V. R. Caiolfa, V. Corti, N. Sidenius, M. Zamai, FASEB J. 2011, 25, 2883–2897.
- 17K. C. Crosby, et al., Biophys. J. 2013, 104, 1875–1885.
- 18P. Nagy, J. Claus, T. M. Jovin, D. J. Arndt-Jovin, Proc. Natl. Acad. Sci. USA 2010, 107, 16524–16529.
- 19F. Cutrale, et al., Nat. Protoc. 2019, 14, 616–638.
- 20S. Ojosnegros, et al., Proc. Natl. Acad. Sci. USA 2017, 114, 13188–13193.
- 21C. Pellet-Many, P. Frankel, H. Jia, I. Zachary, Biochem. J. 2008, 411, 211–226.
- 22I. C. Zachary, Biochem. Soc. Trans. 2011, 39, 1583–1591.
- 23M. Klagsbrun, S. Takashima, R. Mamluk, Adv. Exp. Med. Biol. 2002, 515, 33–48.
- 24D. R. Bielenberg, C. A. Pettaway, S. Takashima, M. Klagsbrun, Exp. Cell Res. 2006, 312, 584–593.
- 25C. King, D. Wirth, S. Workman, K. Hristova, Biochim. Biophys. Acta Biomembr. 2018, 1860, 2118–2125.
- 26A. Trullo, V. Corti, E. Arza, V. R. Caiolfa, M. Zamai, Microsc. Res. Tech. 2013, 76, 1135–1146.
- 27T. Andersen, P. Auk-Emblem, M. Dornish, Microarrays 2015, 4, 133–161.
- 28O. Chaudhuri, et al., Nat. Mater. 2016, 15, 326–334.
- 29B. D. Ratner, A. S. Hoffman, F. J. Schoen, J. E. Lemons, Biomaterials science: an introduction to materials in medicine, Elsevier, Amsterdam, 2004.
- 30M. Guizar-Sicairos, S. T. Thurman, J. R. Fienup, Opt. Lett. 2008, 33, 156–158.
- 31J. Adler, A. I. Shevchuk, P. Novak, Y. E. Korchev, I. Parmryd, Nat. Methods 2010, 7, 170–171.
- 32I. Parmryd, B. Onfelt, FEBS J. 2013, 280, 2775–2784.
- 33L. R. Chen, L. Novicky, M. Merzlyakov, T. Hristov, K. Hristova, J. Am. Chem. Soc. 2010, 132, 3628–3635.
- 34S. Sarabipour, N. Del Piccolo, K. Hristova, Acc. Chem. Res. 2015, 48, 2262–2269.
- 35C. King, M. Stoneman, V. Raicu, K. Hristova, Integr. Biol. 2016, 8, 216–229.
- 36B. Sinha, et al., Cell 2011, 144, 402–413.
- 37D. R. Singh, et al., Biochem. J. 2015, 471, 101–109.
- 38D. R. Singh, et al., J. Biol. Chem. 2015, 290, 27271–27279.
- 39D. R. Singh, F. Ahmed, S. Sarabipour, K. Hristova, J. Mol. Biol. 2017, 429, 2231–2245.
- 40J. R. Weber, et al., J. Exp. Med. 1998, 187, 1157–1161.
- 41W. Zhang, J. Sloan-Lancaster, J. Kitchen, R. P. Trible, L. E. Samelson, Cell 1998, 92, 83–92.
- 42S. C. Bunnell, V. Kapoor, R. P. Trible, W. Zhang, L. E. Samelson, Immunity 2001, 14, 315–329.
- 43L. Adámková, et al., Int. J. Mol. Sci. 2019, 20, 1884.
- 44M. D. Paul, H. N. Grubb, K. Hristova, J. Biol. Chem. 2020, 295, 9917–9933.
- 45M. P. Stemmler, Mol. BioSyst. 2008, 4, 835–850.
- 46I. Muhamed, et al., J. Cell Sci. 2016, 129, 1843–1854.
- 47N. Shashikanth, et al., J. Biol. Chem. 2015, 290, 21749–21761.
- 48H. Chen, Z. He, A. Bagri, M. Tessier-Lavigne, Neuron 1998, 21, 1283–1290.
- 49F. Nakamura, M. Tanaka, T. Takahashi, R. G. Kalb, S. M. Strittmatter, Neuron 1998, 21, 1093–1100.
- 50T. Takahashi, F. Nakamura, Z. Jin, R. G. Kalb, S. M. Strittmatter, Nat. Neurosci. 1998, 1, 487–493.
- 51D. R. Singh, et al., Biochim. Biophys. Acta Mol. Cell Res. 2017, 1864, 31–38.
- 52D. R. Singh, C. King, M. Salotto, K. Hristova, Biochim. Biophys. Acta Biomembr. 2020, 1862, 183015.
- 53S. Sarabipour, K. Ballmer-Hofer, K. Hristova, eLife 2016, 5, e13876.
- 54F. Ahmed, K. Hristova, Biochem. J. 2018, 475, 3669–3685.
- 55C. King, V. Raicu, K. Hristova, J. Biol. Chem. 2017, 292, 5291–5310.
- 56V. Raicu, J. Biol. Phys. 2007, 33, 109–127.
- 57V. Dunsing, et al., Sci. Rep. 2018, 8, 1–12.
- 58S. Sarabipour, K. Hristova, Biochim. Biophys. Acta Biomembr. 2016, 1858, 1436–1442.
- 59C. King, S. Sarabipour, P. Byrne, D. J. Leahy, K. Hristova, Biophys. J. 2014, 106, 1309–1317.
- 60N. Del Piccolo, S. Sarabipour, K. Hristova, J. Biol. Chem. 2017, 292, 1288–1301.
- 61M. R. Stoneman, et al., Nat. Methods 2019, 16, 493–496.
- 62M. Stoneman, G. Biener, V. Raicu, Proposal for simultaneous analysis of fluorescence intensity fluctuations and Resonance Energy Transfer (iFRET) measurements, Methods and Applications in Fluorescence, 2020.
- 63A. G. Godin, et al., Proc. Natl. Acad. Sci. USA 2011, 108, 7010–7015.
- 64J. L. Swift, et al., Proc. Natl. Acad. Sci. USA 2011, 108, 7016–7021.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.