2D Conductive Metal–Organic Frameworks: An Emerging Platform for Electrochemical Energy Storage
Jingjuan Liu
Department of Chemistry, Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072 China
These authors contributed equally to this work.
Search for more papers by this authorXiaoyu Song
Department of Chemistry, Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Ting Zhang
Department of Chemistry, Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorProf. Shiyong Liu
College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000 China
Search for more papers by this authorProf. Herui Wen
College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000 China
Search for more papers by this authorCorresponding Author
Prof. Long Chen
Department of Chemistry, Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorJingjuan Liu
Department of Chemistry, Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072 China
These authors contributed equally to this work.
Search for more papers by this authorXiaoyu Song
Department of Chemistry, Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Ting Zhang
Department of Chemistry, Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorProf. Shiyong Liu
College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000 China
Search for more papers by this authorProf. Herui Wen
College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000 China
Search for more papers by this authorCorresponding Author
Prof. Long Chen
Department of Chemistry, Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorAbstract
Two-dimensional conductive metal–organic frameworks (2D c-MOFs) as an emerging class of multifunctional materials have attracted extensive attention due to their predictable and diverse structures, intrinsic permanent porosity, high charge mobility, and excellent electrical conductivity. Such unique characteristics render them as a promising new platform for electrical related devices. This Minireview highlights the recent key progress of 2D c-MOFs with emphasis on the design strategies, unique electrical properties, and potential applications in electrochemical energy storage. The thorough elucidation of structure–function correlations may offer a guidance for the development of 2D c-MOFs based next-generation energy storage devices.
Conflict of interest
The authors declare no conflict of interest.
References
- 1S. H. Lo, L. Feng, K. Tan, Z. Huang, S. Yuan, K. Y. Wang, B. H. Li, W. L. Liu, G. S. Day, S. Tao, C. C. Yang, T. T. Luo, C. H. Lin, S. L. Wang, S. J. L. Billinge, K. L. Lu, Y. J. Chabal, X. Zou, H. C. Zhou, Nat. Chem. 2020, 12, 90–97.
- 2
- 2aK. Geng, T. He, R. Liu, K. T. Tan, Z. Li, S. Tao, Y. Gong, Q. Jiang, D. Jiang, Chem. Rev. 2020, https://doi.org/10.1021/acs.chemrev.9b00550;
- 2bY. Li, Q. Chen, T. Xu, Z. Xie, J. Liu, X. Yu, S. Ma, T. Qin, L. Chen, J. Am. Chem. Soc. 2019, 141, 13822–13828;
- 2cZ. Xie, Y. Li, L. Chen, D. Jiang, Acta Polym. Sin. 2016, 12, 1621–1634;
- 2dY. Li, W. Chen, G. Xing, D. Jiang, L. Chen, Chem. Soc. Rev. 2020, 49, 2852–2868.
- 3S. Wu, Y. Lin, J. Liu, W. Shi, G. Yang, P. Cheng, Adv. Funct. Mater. 2018, 28, 1707169.
- 4
- 4aW. Hao, D. Chen, Y. Li, Z. Yang, G. Xing, J. Li, L. Chen, Chem. Mater. 2019, 31, 8100–8105;
- 4bX. Yan, H. Liu, Y. Li, W. Chen, T. Zhang, Z. Zhao, G. Xing, L. Chen, Macromolecules 2019, 52, 7977–7983.
- 5J. Hou, M. L. Ríos Gómez, A. Krajnc, A. McCaul, S. Li, A. M. Bumstead, A. F. Sapnik, Z. Deng, R. Lin, P. A. Chater, D. S. Keeble, D. A. Keen, D. Appadoo, B. Chan, V. Chen, G. Mali, T. D. Bennett, J. Am. Chem. Soc. 2020, 142, 3880–3890.
- 6A. E. Thorarinsdottir, T. D. Harris, Chem. Rev. 2020, https://doi.org/10.1021/acs.chemrev.9b00666.
- 7M. Savage, Y. Cheng, T. L. Easun, J. E. Eyley, S. P. Argent, M. R. Warren, W. Lewis, C. Murray, C. C. Tang, M. D. Frogley, G. Cinque, J. Sun, S. Rudić, R. T. Murden, M. J. Benham, A. N. Fitch, A. J. Blake, A. J. Ramirez-Cuesta, S. Yang, M. Schröder, Adv. Mater. 2016, 28, 8705–8711.
- 8
- 8aL. Sun, M. G. Campbell, M. Dincă, Angew. Chem. Int. Ed. 2016, 55, 3566–3579; Angew. Chem. 2016, 128, 3628–3642;
- 8bM. Ko, L. Mendecki, K. A. Mirica, Chem. Commun. 2018, 54, 7873–7891;
- 8cL. S. Xie, G. Skorupskii, M. Dincă, Chem. Rev. 2020, https://doi.org/10.1021/acs.chemrev.9b00766.
- 9
- 9aR. Dong, P. Han, H. Arora, M. Ballabio, M. Karakus, Z. Zhang, C. Shekhar, P. Adler, P. S. Petkov, A. Erbe, S. C. B. Mannsfeld, C. Felser, T. Heine, M. Bonn, X. Feng, E. Cánovas, Nat. Mater. 2018, 17, 1027–1032;
- 9bR. Dong, Z. Zhang, D. C. Tranca, S. Zhou, M. Wang, P. Adler, Z. Liao, F. Liu, Y. Sun, W. Shi, Z. Zhang, E. Zschech, S. C. B. Mannsfeld, C. Felser, X. Feng, Nat. Commun. 2018, 9, 2637;
- 9cH. Wu, W. Zhang, S. Kandambeth, O. Shekhah, M. Eddaoudi, H. N. Alshareef, Adv. Energy Mater. 2019, 9, 1900482.
- 10
- 10aT. Kambe, R. Sakamoto, K. Hoshiko, K. Takada, M. Miyachi, J.-H. Ryu, S. Sasaki, J. Kim, K. Nakazato, M. Takata, H. Nishihara, J. Am. Chem. Soc. 2013, 135, 2462–2465;
- 10bN. Lahiri, N. Lotfizadeh, R. Tsuchikawa, V. V. Deshpande, J. Louie, J. Am. Chem. Soc. 2017, 139, 19–22;
- 10cJ. Park, A. C. Hinckley, Z. Huang, D. Feng, A. A. Yakovenko, M. Lee, S. Chen, X. Zou, Z. Bao, J. Am. Chem. Soc. 2018, 140, 14533–14537.
- 11
- 11aM. Hmadeh, Z. Lu, Z. Liu, F. Gándara, H. Furukawa, S. Wan, V. Augustyn, R. Chang, L. Liao, F. Zhou, E. Perre, V. Ozolins, K. Suenaga, X. Duan, B. Dunn, Y. Yamamto, O. Terasaki, O. M. Yaghi, Chem. Mater. 2012, 24, 3511–3513;
- 11bD. Sheberla, L. Sun, M. A. Blood-Forsythe, S. Er, C. R. Wade, C. K. Brozek, A. Aspuru-Guzik, M. Dincă, J. Am. Chem. Soc. 2014, 136, 8859–8862;
- 11cR. Dong, M. Pfeffermann, H. Liang, Z. Zheng, X. Zhu, J. Zhang, X. Feng, Angew. Chem. Int. Ed. 2015, 54, 12058–12063; Angew. Chem. 2015, 127, 12226–12231;
- 11dY. Jiang, I. Oh, S. H. Joo, O. Buyukcakir, X. Chen, S. H. Lee, M. Huang, W. K. Seong, S. K. Kwak, J.-W. Yoo, R. S. Ruoff, J. Am. Chem. Soc. 2019, 141, 16884–16893;
- 11eY. Cui, J. Yan, Z. Chen, W. Xing, C. Ye, X. Li, Y. Zou, Y. Sun, C. Liu, W. Xu, D. Zhu, iScience 2020, 23, 100812.
- 12S. Bi, H. Banda, M. Chen, L. Niu, M. Chen, T. Wu, J. Wang, R. Wang, J. Feng, T. Chen, M. Dincă, A. A. Kornyshev, G. Feng, Nat. Mater. 2020, 19, 552–558.
- 13Q. Zhao, S. H. Li, R. L. Chai, X. Ren, C. Zhang, ACS Appl. Mater. Interfaces 2020, 12, 7504–7509.
- 14
- 14aZ. Meng, A. Aykanat, K. A. Mirica, J. Am. Chem. Soc. 2019, 141, 2046–2053;
- 14bH. Jia, Y. Yao, J. Zhao, Y. Gao, Z. Luo, P. Du, J. Mater. Chem. A 2018, 6, 1188–1195;
- 14cH. Nagatomi, N. Yanai, T. Yamada, K. Shiraishi, N. Kimizuka, Chem. Eur. J. 2018, 24, 1806–1810;
- 14dW. Li, L. Sun, J. Qi, P. Jarillo-Herrero, M. Dincă, J. Li, Chem. Sci. 2017, 8, 2859–2867;
- 14eR. Matheu, E. Gutierrez-Puebla, M. A. Monge, C. S. Diercks, J. Kang, M. S. Prevot, X. Pei, N. Hanikel, B. Zhang, P. Yang, O. M. Yaghi, J. Am. Chem. Soc. 2019, 141, 17081–17085.
- 15S. Jin, J. P. Hill, Q. Ji, L. K. Shrestha, K. Ariga, J. Mater. Chem. A 2016, 4, 5737–5744.
- 16J. Liu, Y. Zhou, Z. Xie, Y. Li, Y. Liu, J. Sun, Y. Ma, O. Terasaki, L. Chen, Angew. Chem. Int. Ed. 2020, 59, 1081–1086; Angew. Chem. 2020, 132, 1097–1102.
- 17
- 17aX. Huang, S. Zhang, L. Liu, L. Yu, G. Chen, W. Xu, D. Zhu, Angew. Chem. Int. Ed. 2018, 57, 146–150; Angew. Chem. 2018, 130, 152–156;
- 17bX. Huang, P. Sheng, Z. Tu, F. Zhang, J. Wang, H. Geng, Y. Zou, C. A. Di, Y. Yi, Y. Sun, W. Xu, D. Zhu, Nat. Commun. 2015, 6, 7408;
- 17cY. Cui, J. Yan, Z. Chen, J. Zhang, Y. Zou, Y. Sun, W. Xu, D. Zhu, Adv. Sci. 2019, 6, 1802235.
- 18
- 18aA. J. Clough, J. M. Skelton, C. A. Downes, A. A. de la Rosa, J. W. Yoo, A. Walsh, B. C. Melot, S. C. Marinescu, J. Am. Chem. Soc. 2017, 139, 10863–10867;
- 18bL. Mendecki, M. Ko, X. Zhang, Z. Meng, K. A. Mirica, J. Am. Chem. Soc. 2017, 139, 17229–17232.
- 19J. Cui, Z. Xu, Chem. Commun. 2014, 50, 3986–3988.
- 20D. Feng, T. Lei, M. R. Lukatskaya, J. Park, Z. Huang, M. Lee, L. Shaw, S. Chen, A. A. Yakovenko, A. Kulkarni, J. Xiao, K. Fredrickson, J. B. Tok, X. Zou, Y. Cui, Z. Bao, Nat. Energy 2018, 3, 30–36.
- 21J. H. Dou, L. Sun, Y. Ge, W. Li, C. H. Hendon, J. Li, S. Gul, J. Yano, E. A. Stach, M. Dincă, J. Am. Chem. Soc. 2017, 139, 13608–13611.
- 22G. Skorupskii, B. A. Trump, T. W. Kasel, C. M. Brown, C. H. Hendon, M. Dincă, Nat. Chem. 2020, 12, 131–136.
- 23M. E. Foster, K. Sohlberg, M. D. Allendorf, A. A. Talin, J. Phys. Chem. Lett. 2018, 9, 481–486.
- 24L. P. Tang, L. M. Tang, H. Geng, Y. P. Yi, Z. Wei, K. Q. Chen, H. X. Deng, Appl. Phys. Lett. 2018, 112, 012101.
- 25R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, M. Bonn, Rev. Mod. Phys. 2011, 83, 543–586.
- 26
- 26aC. Ashworth, Nat. Rev. Mater. 2018, 3, 18010;
- 26bG. Zhou, L. Xu, G. Hu, L. Mai, Y. Cui, Chem. Rev. 2019, 119, 11042–11109.
- 27
- 27aK. Wada, K. Sakaushi, S. Sasaki, H. Nishihara, Angew. Chem. Int. Ed. 2018, 57, 8886–8890; Angew. Chem. 2018, 130, 9024–9028;
- 27bJ. Park, M. Lee, D. Feng, Z. Huang, A. C. Hinckley, A. Yakovenko, X. Zou, Y. Cui, Z. Bao, J. Am. Chem. Soc. 2018, 140, 10315–10323;
- 27cK. W. Nam, S. S. Park, R. dos Reis, V. P. Dravid, H. Kim, C. A. Mirkin, J. F. Stoddart, Nat. Commun. 2019, 10, 4948.
- 28D. Sheberla, J. C. Bachman, J. S. Elias, C. J. Sun, Y. Shao-Horn, M. Dincă, Nat. Mater. 2017, 16, 220–224.
- 29P. Simon, Y. Gogotsi, Nat. Mater. 2008, 7, 845–854.
- 30J. R. Miller, P. Simon, Science 2008, 321, 651–652.
- 31H. Ji, X. Zhao, Z. Qiao, J. Jung, Y. Zhu, Y. Lu, L. L. Zhang, A. H. MacDonald, R. S. Ruoff, Nat. Commun. 2014, 5, 3317.
- 32W. H. Li, K. Ding, H. R. Tian, M. S. Yao, B. Nath, W. H. Deng, Y. Wang, G. Xu, Adv. Funct. Mater. 2017, 27, 1702067.
- 33R. F. Service, Science 2016, 352, 1046–1049.
- 34J. M. Tarascon, M. Armand, Nature 2001, 414, 359–367.
- 35
- 35aM. Zheng, H. Tang, L. Li, Q. Hu, L. Zhang, H. Xue, H. Pang, Adv. Sci. 2018, 5, 1700592;
- 35bY. Tang, Y. Zhang, W. Li, B. Ma, X. Chen, Chem. Soc. Rev. 2015, 44, 5926–5940.
- 36
- 36aQ. Jiang, P. Xiong, J. Liu, Z. Xie, Q. Wang, X. Q. Yang, E. Hu, Y. Cao, J. Sun, Y. Xu, L. Chen, Angew. Chem. Int. Ed. 2020, 59, 5273–5277; Angew. Chem. 2020, 132, 5311–5315;
- 36bM. E. Ziebel, C. A. Gaggioli, A. B. Turkiewicz, W. Ryu, L. Gagliardi, J. R. Long, J. Am. Chem. Soc. 2020, 142, 2653–2664.
- 37S. Zhou, X. Kong, B. Zheng, F. Huo, M. Strømme, C. Xu, ACS Nano 2019, 13, 9578–9586.
- 38Z. Zhang, H. Yoshikawa, K. Awaga, J. Am. Chem. Soc. 2014, 136, 16112–16115.
- 39Y. X. Yin, S. Xin, Y. G. Guo, L. J. Wan, Angew. Chem. Int. Ed. 2013, 52, 13186–13200; Angew. Chem. 2013, 125, 13426–13441.
- 40Y. Ansari, S. Zhang, B. Wen, F. Fan, Y. M. Chiang, Adv. Energy Mater. 2019, 9, 1802213.
- 41Y. Yang, G. Zheng, Y. Cui, Chem. Soc. Rev. 2013, 42, 3018–3032.
- 42A. Shyamsunder, W. Beichel, P. Klose, Q. Pang, H. Scherer, A. Hoffmann, G. K. Murphy, I. Krossing, L. F. Nazar, Angew. Chem. Int. Ed. 2017, 56, 6192–6197; Angew. Chem. 2017, 129, 6288–6293.
- 43Z. Wei Seh, W. Li, J. J. Cha, G. Zheng, Y. Yang, M. T. McDowell, P. C. Hsu, Y. Cui, Nat. Commun. 2013, 4, 1331.
- 44F. Li, X. Zhang, X. Liu, M. Zhao, ACS Appl. Mater. Interfaces 2018, 10, 15012–15020.
- 45D. Cai, M. Lu, L. Li, J. Cao, D. Chen, H. Tu, J. Li, W. Han, Small 2019, 15, 1902605.
- 46M. S. Islam, C. A. J. Fisher, Chem. Soc. Rev. 2014, 43, 185–204.
- 47P. Adelhelm, P. Hartmann, C. L. Bender, M. Busche, C. Eufinger, J. Janek, Beilstein J. Nanotechnol. 2015, 6, 1016–1055.
- 48B. L. Ellis, L. F. Nazar, Curr. Opin. Solid State Mater. Sci. 2012, 16, 168–177.
- 49H. Wang, G. Zhang, L. Ke, B. Liu, S. Zhang, C. Deng, Nanoscale 2017, 9, 9365–9375.
- 50H. Tian, H. Shao, Y. Chen, X. Fang, P. Xiong, B. Sun, P. H. L. Notten, G. Wang, Nano Energy 2019, 57, 692–702.
- 51D. Gong, B. Wang, J. Zhu, R. Podila, A. M. Rao, X. Yu, Z. Xu, B. Lu, Adv. Energy Mater. 2017, 7, 1601885.
- 52F. Wang, Z. Liu, C. Yang, H. Zhong, G. Nam, P. Zhang, R. Dong, Y. Wu, J. Cho, J. Zhang, X. Feng, Adv. Mater. 2020, 32, 1905361.
- 53B. Tang, L. Shan, S. Liang, J. Zhou, Energy Environ. Sci. 2019, 12, 3288–3304.
- 54G. Fang, J. Zhou, A. Pan, S. Liang, ACS Energy Lett. 2018, 3, 2480–2501.
- 55S. Huang, J. Zhu, J. Tian, Z. Niu, Chem. Eur. J. 2019, 25, 14480–14494.
- 56N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei, C. Chen, X. Liu, J. Chen, J. Am. Chem. Soc. 2016, 138, 12894–12901.
- 57K. W. Nam, H. Kim, J. H. Choi, J. W. Choi, Energy Environ. Sci. 2019, 12, 1999–2009.
- 58W. Zhu, C. Zhang, Q. Li, L. Xiong, R. Chen, X. Wan, Z. Wang, W. Chen, Z. Deng, Y. Peng, Appl. Catal. B 2018, 238, 339–345.
- 59
- 59aM. Yao, X. Lv, Z. Fu, W. Li, W. Deng, G. Wu, G. Xu, Angew. Chem. Int. Ed. 2017, 56, 16510–16514; Angew. Chem. 2017, 129, 16737–16741;
- 59bX. Song, X. Wang, Y. Li, C. Zheng, B. Zhang, C. A. Di, F. Li, C. Jin, W. Mi, L. Chen, W. Hu, Angew. Chem. Int. Ed. 2020, 59, 1118–1123; Angew. Chem. 2020, 132, 1134–1139.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.