Unveiling 79-Year-Old Ixene and Its BN-Doped Derivative
Dr. Palas Baran Pati
Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919 Republic of Korea
Search for more papers by this authorEunji Jin
Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919 Republic of Korea
Search for more papers by this authorYohan Kim
Department of Materials Science and Engineering, Low Dimensional Carbon Materials Center, Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919 Republic of Korea
Search for more papers by this authorYongchul Kim
Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919 Republic of Korea
Search for more papers by this authorJinhong Mun
Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919 Republic of Korea
Search for more papers by this authorSo Jung Kim
Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919 Republic of Korea
Search for more papers by this authorProf. Seok Ju Kang
Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919 Republic of Korea
Center for Wave Energy Materials, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919 Republic of Korea
Search for more papers by this authorProf. Wonyoung Choe
Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919 Republic of Korea
Search for more papers by this authorCorresponding Author
Prof. Geunsik Lee
Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919 Republic of Korea
Center for Wave Energy Materials, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919 Republic of Korea
Search for more papers by this authorCorresponding Author
Prof. Hyung-Joon Shin
Department of Materials Science and Engineering, Low Dimensional Carbon Materials Center, Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919 Republic of Korea
Search for more papers by this authorCorresponding Author
Prof. Young S. Park
Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919 Republic of Korea
Center for Wave Energy Materials, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919 Republic of Korea
Search for more papers by this authorDr. Palas Baran Pati
Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919 Republic of Korea
Search for more papers by this authorEunji Jin
Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919 Republic of Korea
Search for more papers by this authorYohan Kim
Department of Materials Science and Engineering, Low Dimensional Carbon Materials Center, Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919 Republic of Korea
Search for more papers by this authorYongchul Kim
Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919 Republic of Korea
Search for more papers by this authorJinhong Mun
Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919 Republic of Korea
Search for more papers by this authorSo Jung Kim
Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919 Republic of Korea
Search for more papers by this authorProf. Seok Ju Kang
Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919 Republic of Korea
Center for Wave Energy Materials, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919 Republic of Korea
Search for more papers by this authorProf. Wonyoung Choe
Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919 Republic of Korea
Search for more papers by this authorCorresponding Author
Prof. Geunsik Lee
Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919 Republic of Korea
Center for Wave Energy Materials, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919 Republic of Korea
Search for more papers by this authorCorresponding Author
Prof. Hyung-Joon Shin
Department of Materials Science and Engineering, Low Dimensional Carbon Materials Center, Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919 Republic of Korea
Search for more papers by this authorCorresponding Author
Prof. Young S. Park
Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919 Republic of Korea
Center for Wave Energy Materials, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919 Republic of Korea
Search for more papers by this authorAbstract
Polycyclic aromatic hydrocarbons (PAHs) are key components of organic electronics. The electronic properties of these carbon-rich materials can be controlled through doping with heteroatoms such as B and N, however, few convenient syntheses of BN-doped PAHs have been reported. Described herein is the rationally designed, two-step syntheses of previously unknown ixene and BN-doped ixene (B2N2-ixene), and their characterizations. Compared to ixene, B2N2-ixene absorbs longer-wavelength light and has a smaller electrochemical energy gap. In addition to its single-crystal structure, scanning tunneling microscopy revealed that B2N2-ixene adopts a nonplanar geometry on a Au(111) surface. The experimentally obtained electronic structure of B2N2-ixene and the effect of BN-doping were confirmed by DFT calculations. This synthesis enables the efficient and convenient construction of BN-doped systems with extended π-conjugation that can be used in versatile organic electronics applications.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202004049-sup-0001-misc_information.pdf3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Narita, X. Feng, Y. Hernandez, S. A. Jensen, M. Bonn, H. Yang, I. A. Verzhbitskiy, C. Casiraghi, M. R. Hansen, A. H. R. Koch, G. Fytas, O. Ivasenko, B. Li, K. S. Mali, T. Balandina, S. Mahesh, S. De Feyter, K. Müllen, Nat. Chem. 2014, 6, 126–132.
- 2J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, R. Fasel, Nature 2010, 466, 470–473.
- 3Y. Koga, T. Kaneda, Y. Saito, K. Murakami, K. Itami, Science 2018, 359, 435–439.
- 4M. Grzybowski, K. Skonieczny, H. Butenschön, D. T. Gryko, Angew. Chem. Int. Ed. 2013, 52, 9900–9930; Angew. Chem. 2013, 125, 10084–10115.
- 5E. Clar, Nature 1948, 161, 238–239.
- 6K. Ozaki, K. Kawasumi, M. Shibata, H. Ito, K. Itami, Nat. Commun. 2015, 6, 6251.
- 7T. H. Vo, M. Shekhirev, D. A. Kunkel, M. D. Morton, E. Berglund, L. Kong, P. M. Wilson, P. A. Dowben, A. Enders, A. Sinitskii, Nat. Commun. 2014, 5, 3189.
- 8Y.-C. Chen, T. Cao, C. Chen, Z. Pedramrazi, D. Haberer, D. G. de Oteyza, F. R. Fischer, S. G. Louie, M. F. Crommie, Nat. Nanotechnol. 2015, 10, 156–160.
- 9J. Wu, W. Pisula, K. Müllen, Chem. Rev. 2007, 107, 718–747.
- 10A. Narita, X.-Y. Wang, X. Feng, K. Müllen, Chem. Soc. Rev. 2015, 44, 6616–6643.
- 11M. Stępień, E. Gońka, M. Żyła, N. Sprutta, Chem. Rev. 2017, 117, 3479–3716.
- 12D. Bonifazi, F. Fasano, M. M. Lorenzo-Garcia, D. Marinelli, H. Oubaha, J. Tasseroul, Chem. Commun. 2015, 51, 15222–15236.
- 13Z. Liu, T. B. Marder, Angew. Chem. Int. Ed. 2008, 47, 242–244; Angew. Chem. 2008, 120, 248–250.
- 14Z. X. Giustra, S.-Y. Liu, J. Am. Chem. Soc. 2018, 140, 1184–1194.
- 15J. S. A. Ishibashi, J. L. Marshall, A. Mazière, G. J. Lovinger, B. Li, L. N. Zakharov, A. Dargelos, A. Graciaa, A. Chrostowska, S.-Y. Liu, J. Am. Chem. Soc. 2014, 136, 15414–15421.
- 16X.-Y. Wang, H.-R. Lin, T. Lei, D.-C. Yang, F.-D. Zhuang, J.-Y. Wang, S.-C. Yuan, J. Pei, Angew. Chem. Int. Ed. 2013, 52, 3117–3120; Angew. Chem. 2013, 125, 3199–3202.
- 17S. Kawai, S. Saito, S. Osumi, S. Yamaguchi, A. S. Foster, P. Spijker, E. Meyer, Nat. Commun. 2015, 6, 8098.
- 18J. Park, J. Lee, L. Liu, K. W. Clark, C. Durand, C. Park, B. G. Sumpter, A. P. Baddorf, A. Mohsin, M. Yoon, G. Gu, A.-P. Li, Nat. Commun. 2014, 5, 5403.
- 19T. Hatakeyama, S. Hashimoto, S. Seki, M. Nakamura, J. Am. Chem. Soc. 2011, 133, 18614–18617.
- 20X.-Y. Wang, F.-D. Zhuang, R.-B. Wang, X.-C. Wang, X.-Y. Cao, J.-Y. Wang, J. Pei, J. Am. Chem. Soc. 2014, 136, 3764–3767.
- 21X.-Y. Wang, F.-D. Zhuang, X.-C. Wang, X.-Y. Cao, J.-Y. Wang, J. Pei, Chem. Commun. 2015, 51, 4368–4371.
- 22X.-Y. Wang, A. Narita, X. Feng, K. Müllen, J. Am. Chem. Soc. 2015, 137, 7668–7671.
- 23X.-Y. Wang, D.-C. Yang, F.-D. Zhuang, J.-J. Liu, J.-Y. Wang, J. Pei, Chem. Eur. J. 2015, 21, 8867–8873.
- 24M. Krieg, F. Reicherter, P. Haiss, M. Ströbele, K. Eichele, M.-J. Treanor, R. Schaub, H. F. Bettinger, Angew. Chem. Int. Ed. 2015, 54, 8284–8286; Angew. Chem. 2015, 127, 8402–8404.
- 25J. Dosso, J. Tasseroul, F. Fasano, D. Marinelli, N. Biot, A. Fermi, D. Bonifazi, Angew. Chem. Int. Ed. 2017, 56, 4483–4487; Angew. Chem. 2017, 129, 4554–4558.
- 26K. Matsui, S. Oda, K. Yoshiura, K. Nakajima, N. Yasuda, T. Hatakeyama, J. Am. Chem. Soc. 2018, 140, 1195–1198.
- 27F.-D. Zhuang, Z.-H. Sun, Z.-F. Yao, Q.-R. Chen, Z. Huang, J.-H. Yang, J.-Y. Wang, J. Pei, Angew. Chem. Int. Ed. 2019, 58, 10708–10712; Angew. Chem. 2019, 131, 10818–10822.
- 28M. J. S. Dewar, R. Dietz, J. Chem. Soc. 1959, 2728–2730.
- 29G. H. M. Davies, Z.-Z. Zhou, M. Jouffroy, G. A. Molander, J. Org. Chem. 2017, 82, 549–555.
- 30P. I. Paetzold, G. Stohr, H. Maisch, H. Lenz, Chem. Ber. 1968, 101, 2881–2888.
- 31P. Paetzold, C. Stanescu, J. R. Stubenrauch, M. Bienmüller, U. Englert, Z. Anorg. Allg. Chem. 2004, 630, 2632–2640.
- 32F.-D. Zhuang, J.-M. Han, S. Tang, J.-H. Yang, Q.-R. Chen, J.-Y. Wang, J. Pei, Organometallics 2017, 36, 2479–2482.
- 33T. Kaehler, M. Bolte, H.-W. Lerner, M. Wagner, Angew. Chem. Int. Ed. 2019, 58, 11379–11384; Angew. Chem. 2019, 131, 11501–11506.
- 34R. J. Kahan, D. L. Crossley, J. Cid, J. E. Radcliffe, M. J. Ingleson, Angew. Chem. Int. Ed. 2018, 57, 8084–8088; Angew. Chem. 2018, 130, 8216–8220.
- 35D. L. Crossley, R. J. Kahan, S. Endres, A. J. Warner, R. A. Smith, J. Cid, J. J. Dunsford, J. E. Jones, I. Vitorica-Yrezabal, M. J. Ingleson, Chem. Sci. 2017, 8, 7969–7977.
- 36E. Clar, B. A. McAndrew, J. F. Stephen, Tetrahedron 1970, 26, 5465–5478.
- 37C. Dufraisse, M. Loury, C. R. Hebd. Seances Acad. Sci. 1941, 213, 689–692.
- 38S. S. Chissick, M. J. S. Dewar, P. M. Maitlis, Tetrahedron Lett. 1960, 1, 8–10.
10.1016/S0040-4039(00)70270-X Google Scholar
- 39M. J. S. Dewar, W. H. Poesche, J. Org. Chem. 1964, 29, 1757–1762.
- 40M. J. D. Bosdet, W. E. Piers, T. S. Sorensen, M. Parvez, Angew. Chem. Int. Ed. 2007, 46, 4940–4943; Angew. Chem. 2007, 119, 5028–5031.
- 41S. Wang, D.-T. Yang, J. Lu, H. Shimogawa, S. Gong, X. Wang, S. K. Mellerup, A. Wakamiya, Y.-L. Chang, C. Yang, Z.-H. Lu, Angew. Chem. Int. Ed. 2015, 54, 15074–15078; Angew. Chem. 2015, 127, 15289–15293.
- 42H. Arslan, J. D. Saathoff, D. N. Bunck, P. Clancy, W. R. Dichtel, Angew. Chem. Int. Ed. 2012, 51, 12051–12054; Angew. Chem. 2012, 124, 12217–12220.
- 43N. Asao, T. Nogami, S. Lee, Y. Yamamoto, J. Am. Chem. Soc. 2003, 125, 10921–10925.
- 44A. Camerman, J. Trotter, Acta Crystallogr. 1965, 18, 636–643.
- 45X. Fang, H. Yang, J. W. Kampf, M. M. B. Holl, A. J. Ashe, Organometallics 2006, 25, 513–518.
- 46C. A. Jaska, D. J. H. Emslie, M. J. D. Bosdet, W. E. Piers, T. S. Sorensen, M. Parvez, J. Am. Chem. Soc. 2006, 128, 10885–10896.
- 47V. M. Hertz, M. Bolte, H.-W. Lerner, M. Wagner, Angew. Chem. Int. Ed. 2015, 54, 8800–8804; Angew. Chem. 2015, 127, 8924–8928.
- 48M. J. D. Bosdet, C. A. Jaska, W. E. Piers, T. S. Sorensen, M. Parvez, Org. Lett. 2007, 9, 1395–1398.
- 49A. Lherbier, X. Blase, Y.-M. Niquet, F. Triozon, S. Roche, Phys. Rev. Lett. 2008, 101, 036808.
- 50L. Chen, Y. Hernandez, X. Feng, K. Müllen, Angew. Chem. Int. Ed. 2012, 51, 7640–7654; Angew. Chem. 2012, 124, 7758–7773.
- 51A. Stabel, P. Herwig, K. Müllen, J. P. Rabe, Angew. Chem. Int. Ed. 1995, 34, 1609–1611; Angew. Chem. 1995, 107, 1768–1770.
- 52C. Tönshoff, M. Müller, T. Kar, F. Latteyer, T. Chassé, K. Eichele, H. F. Bettinger, ChemPhysChem 2012, 13, 1173–1181.
- 53CCDC 1858031 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.