Droplet Precise Self-Splitting on Patterned Adhesive Surfaces for Simultaneous Multidetection
Correction(s) for this article
-
Berichtigung: Droplet Precise Self-Splitting on Patterned Adhesive Surfaces for Simultaneous Multidetection
- Huizeng Li,
- Wei Fang,
- Zhipeng Zhao,
- An Li,
- Zheng Li,
- Mingzhu Li,
- Qunyang Li,
- Xiqiao Feng,
- Yanlin Song,
- Volume 132Issue 33Angewandte Chemie
- pages: 13794-13794
- First Published online: August 4, 2020
Dr. Huizeng Li
Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190 P. R. China
Search for more papers by this authorWei Fang
AML, CNMM, and Department of Engineering Mechanics, and State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorZhipeng Zhao
Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorAn Li
Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorDr. Zheng Li
Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Mingzhu Li
Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Qunyang Li
AML, CNMM, and Department of Engineering Mechanics, and State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorProf. Xiqiao Feng
AML, CNMM, and Department of Engineering Mechanics, and State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Yanlin Song
Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorDr. Huizeng Li
Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190 P. R. China
Search for more papers by this authorWei Fang
AML, CNMM, and Department of Engineering Mechanics, and State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorZhipeng Zhao
Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorAn Li
Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorDr. Zheng Li
Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Mingzhu Li
Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Qunyang Li
AML, CNMM, and Department of Engineering Mechanics, and State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorProf. Xiqiao Feng
AML, CNMM, and Department of Engineering Mechanics, and State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Yanlin Song
Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorDedicated to Professor Youqi Tang on the occasion of his 100th birthday
Abstract
Precise separation and localization of microdroplets are fundamental for various fields, such as high-throughput screening, combinatorial chemistry, and the recognition of complex analytes. We have developed a droplet self-splitting strategy to divide an impacting droplet into predictable microdroplets and deposit them at preset spots for simultaneous multidetection. No matter exchange was observed between these microdroplets, so they could be manipulated independently. Droplet self-splitting was attributed to anisotropic liquid recoiling on the patterned adhesive surface, as influenced by the droplet Weber number and the width of the low-adhesive stripe. A quantitative criterion was also developed to judge the droplet self-splitting capability. The precise separation and distribution of microdroplets enabled simultaneous arrayed reactions and multiple analyte detection using one droplet of sample.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202003839-sup-0001-misc_information.pdf826 KB | Supplementary |
ange202003839-sup-0001-Video_S1.mov11.5 MB | Supplementary |
ange202003839-sup-0001-Video_S2.mov5.9 MB | Supplementary |
ange202003839-sup-0001-Video_S3.mov10.9 MB | Supplementary |
ange202003839-sup-0001-Video_S4.mov9.4 MB | Supplementary |
ange202003839-sup-0001-Video_S5.mov7 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. K. Küster, M. Pabst, R. Zenobi, P. S. Dittrich, Angew. Chem. Int. Ed. 2015, 54, 1671–1675; Angew. Chem. 2015, 127, 1691–1695.
- 2R. H. Cole, S.-Y. Tang, C. A. Siltanen, P. Shahi, J. Q. Zhang, S. Poust, Z. J. Gartner, A. R. Abate, Proc. Natl. Acad. Sci. USA 2017, 114, 8728–8733.
- 3A. A. Popova, D. Marcato, R. Peravali, I. Wehl, U. Schepers, P. A. Levkin, Adv. Funct. Mater. 2018, 28, 1703486.
- 4X. Du, W. Li, G. Du, H. Cho, M. Yu, Q. Fang, L. P. Lee, J. Fang, Anal. Chem. 2018, 90, 3253–3261.
- 5M. Qin, Y. Huang, Y. Li, M. Su, B. Chen, H. Sun, P. Yong, C. Ye, F. Li, Y. Song, Angew. Chem. Int. Ed. 2016, 55, 6911–6914; Angew. Chem. 2016, 128, 7025–7028.
- 6L. Sun, F. Bian, Y. Wang, Y. Wang, X. Zhang, Y. Zhao, Proc. Natl. Acad. Sci. USA 2020, 117, 201921281.
- 7J. L. Garcia-Cordero, Z. H. Fan, Lab Chip 2017, 17, 2150–2166.
- 8D. Haidas, S. Bachler, M. Köhler, L. M. Blank, R. Zenobi, P. S. Dittrich, Anal. Chem. 2019, 91, 2066–2073.
- 9E. S. Isbrandt, R. J. Sullivan, S. G. Newman, Angew. Chem. Int. Ed. 2019, 58, 7180–7191; Angew. Chem. 2019, 131, 7254–7267.
- 10M. Renom-Carrasco, L. Lefort, Chem. Soc. Rev. 2018, 47, 5038–5060.
- 11M. Benz, M. R. Molla, A. Böser, A. Rosenfeld, P. A. Levkin, Nat. Commun. 2019, 10, 2879.
- 12A. Kulesa, J. Kehe, J. E. Hurtado, P. Tawde, P. C. Blainey, Proc. Natl. Acad. Sci. USA 2018, 115, 6685–6690.
- 13E. Ueda, F. L. Geyer, V. Nedashkivska, P. A. Levkin, Lab Chip 2012, 12, 5218–5224.
- 14M. Kuang, L. Wang, Y. Song, Adv. Mater. 2014, 26, 6950–6958.
- 15Y. Zhu, Y.-X. Zhang, W.-W. Liu, Y. Ma, Q. Fang, B. Yao, Sci. Rep. 2015, 5, 9551.
- 16Z. Dong, J. Ma, L. Jiang, ACS Nano 2013, 7, 10371–10379.
- 17A. A. Popova, S. M. Schillo, K. Demir, E. Ueda, A. Nesterov-Mueller, P. A. Levkin, Adv. Mater. 2015, 27, 5217–5222.
- 18Y. Huang, F. Li, M. Qin, L. Jiang, Y. Song, Angew. Chem. Int. Ed. 2013, 52, 7296–7299; Angew. Chem. 2013, 125, 7437–7440.
- 19N. Laan, K. G. de Bruin, D. Bartolo, C. Josserand, D. Bonn, Phys. Rev. Appl. 2014, 2, 044018.
- 20C. Clanet, C. Béguin, D. Richard, D. Quéré, J. Fluid Mech. 2004, 517, 199–208.
- 21H. Li, W. Fang, Y. Li, Q. Yang, M. Li, Q. Li, X.-Q. Feng, Y. Song, Nat. Commun. 2019, 10, 950.
- 22T. M. Schutzius, G. Graeber, M. Elsharkawy, J. Oreluk, C. M. Megaridis, Sci. Rep. 2014, 4, 7029.
- 23X. Wang, M. Sun, S. A. Ferguson, J. D. Hoff, Y. Qin, R. C. Bailey, M. E. Meyerhoff, Angew. Chem. Int. Ed. 2019, 58, 8092–8096; Angew. Chem. 2019, 131, 8176–8180.
- 24P.-Y. Colin, B. Kintses, F. Gielen, C. M. Miton, G. Fischer, M. F. Mohamed, M. Hyvönen, D. P. Morgavi, D. B. Janssen, F. Hollfelder, Nat. Commun. 2015, 6, 10008.
- 25L. Zou, H. Wang, X. Zhu, Y. Ding, R. Chen, Q. Liao, Colloids Surf. A 2018, 537, 139–148.
- 26J. B. Lee, N. Laan, K. G. de Bruin, G. Skantzaris, N. Shahidzadeh, D. Derome, J. Carmeliet, D. Bonn, J. Fluid Mech. 2016, 786, R4.
- 27D. Bartolo, C. Josserand, D. Bonn, J. Fluid Mech. 2005, 545, 329–338.
- 28N. Gao, F. Geyer, D. W. Pilat, S. Wooh, D. Vollmer, H.-J. Butt, R. Berger, Nat. Phys. 2018, 14, 191–196.
- 29M. A. Quetzeri-Santiago, K. Yokoi, A. A. Castrejón-Pita, J. R. Castrejón-Pita, Phys. Rev. Lett. 2019, 122, 228001.
- 30C. K. Longwell, L. Labanieh, J. R. Cochran, Curr. Opin. Biotechnol. 2017, 48, 196–202.
- 31X. Fang, Y. Zheng, Y. Duan, Y. Liu, W. Zhong, Anal. Chem. 2019, 91, 482–504.
- 32C. Schnepel, H. Minges, M. Frese, N. Sewald, Angew. Chem. Int. Ed. 2016, 55, 14159–14163; Angew. Chem. 2016, 128, 14365–14369.
- 33S. M. Z. Hossain, J. D. Brennan, Anal. Chem. 2011, 83, 8772–8778.
- 34A. E. Kownacka, D. Vegelyte, M. Joosse, N. Anton, B. J. Toebes, J. Lauko, I. Buzzacchera, K. Lipinska, D. A. Wilson, N. Geelhoed-Duijvestijn, C. J. Wilson, Biomacromolecules 2018, 19, 4504–4511.
- 35A. K. Yetisen, N. Jiang, A. Tamayol, G. U. Ruiz-Esparza, Y. S. Zhang, S. Medina-Pando, A. Gupta, J. S. Wolffsohn, H. Butt, A. Khademhosseini, S.-H. Yun, Lab Chip 2017, 17, 1137–1148.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.