A Macrocycle Based on a Heptagon-Containing Hexa-peri-hexabenzocoronene
Vicente G. Jiménez
Departamento de Química Orgánica, Unidad de Excelencia de Química aplicada a Biomedicina y Medio Ambiente, Facultad de Ciencias, Universidad de Granada, Avda. Fuente Nueva, s/n, 18071 Granada, Spain
Search for more papers by this authorArthur H. G. David
Departamento de Química Orgánica, Unidad de Excelencia de Química aplicada a Biomedicina y Medio Ambiente, Facultad de Ciencias, Universidad de Granada, Avda. Fuente Nueva, s/n, 18071 Granada, Spain
Search for more papers by this authorProf. Juan M. Cuerva
Departamento de Química Orgánica, Unidad de Excelencia de Química aplicada a Biomedicina y Medio Ambiente, Facultad de Ciencias, Universidad de Granada, Avda. Fuente Nueva, s/n, 18071 Granada, Spain
Search for more papers by this authorCorresponding Author
Dr. Victor Blanco
Departamento de Química Orgánica, Unidad de Excelencia de Química aplicada a Biomedicina y Medio Ambiente, Facultad de Ciencias, Universidad de Granada, Avda. Fuente Nueva, s/n, 18071 Granada, Spain
Search for more papers by this authorCorresponding Author
Dr. Araceli G. Campaña
Departamento de Química Orgánica, Unidad de Excelencia de Química aplicada a Biomedicina y Medio Ambiente, Facultad de Ciencias, Universidad de Granada, Avda. Fuente Nueva, s/n, 18071 Granada, Spain
Search for more papers by this authorVicente G. Jiménez
Departamento de Química Orgánica, Unidad de Excelencia de Química aplicada a Biomedicina y Medio Ambiente, Facultad de Ciencias, Universidad de Granada, Avda. Fuente Nueva, s/n, 18071 Granada, Spain
Search for more papers by this authorArthur H. G. David
Departamento de Química Orgánica, Unidad de Excelencia de Química aplicada a Biomedicina y Medio Ambiente, Facultad de Ciencias, Universidad de Granada, Avda. Fuente Nueva, s/n, 18071 Granada, Spain
Search for more papers by this authorProf. Juan M. Cuerva
Departamento de Química Orgánica, Unidad de Excelencia de Química aplicada a Biomedicina y Medio Ambiente, Facultad de Ciencias, Universidad de Granada, Avda. Fuente Nueva, s/n, 18071 Granada, Spain
Search for more papers by this authorCorresponding Author
Dr. Victor Blanco
Departamento de Química Orgánica, Unidad de Excelencia de Química aplicada a Biomedicina y Medio Ambiente, Facultad de Ciencias, Universidad de Granada, Avda. Fuente Nueva, s/n, 18071 Granada, Spain
Search for more papers by this authorCorresponding Author
Dr. Araceli G. Campaña
Departamento de Química Orgánica, Unidad de Excelencia de Química aplicada a Biomedicina y Medio Ambiente, Facultad de Ciencias, Universidad de Granada, Avda. Fuente Nueva, s/n, 18071 Granada, Spain
Search for more papers by this authorAbstract
A cyclophane is reported incorporating two units of a heptagon-containing extended polycyclic aromatic hydrocarbon (PAH) analogue of the hexa-peri-hexabenzocoronene (HBC) moiety (hept-HBC). This cyclophane represents a new class of macrocyclic structures that incorporate for the first time seven-membered rings within extended PAH frameworks. The saddle curvature of the hept-HBC macrocycle units induced by the presence of the nonhexagonal ring along with the flexible alkyl linkers generate a cavity with shape complementarity and appropriate size to enable π interactions with fullerenes. Therefore, the cyclophane forms host–guest complexes with C60 and C70 with estimated binding constants of Ka=420±2 m−1 and Ka=(6.49±0.23)×103 m−1, respectively. As a result, the macrocycle can selectively bind C70 in the presence of an excess of a mixture of C60 and C70.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202003785-sup-0001-misc_information.pdf5.8 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aH. Isobe, S. Hitosugi, T. Yamasaki, R. Iizuka, Chem. Sci. 2013, 4, 1293–1297;
- 1bT. K. Ronson, A. B. League, L. Gagliardi, C. J. Cramer, J. R. Nitschke, J. Am. Chem. Soc. 2014, 136, 15615–15624;
- 1cM. Yoshizawa, J. K. Klosterman, Chem. Soc. Rev. 2014, 43, 1885–1898;
- 1dT. Matsuno, S. Sato, R. Iizuka, H. Isobe, Chem. Sci. 2015, 6, 909–916;
- 1eT. K. Ronson, W. Meng, J. R. Nitschke, J. Am. Chem. Soc. 2017, 139, 9698–9707;
- 1fK. Yazaki, L. Catti, M. Yoshizawa, Chem. Commun. 2018, 54, 3195–3206;
- 1gD. Lu, Q. Huang, S. Wang, J. Wang, P. Huang, P. Du, Front. Chem. 2019, 7, 668;
- 1hY. Xu, M. von Delius, Angew. Chem. Int. Ed. 2020, 59, 559–573; Angew. Chem. 2020, 132, 567–582.
- 2
- 2aG. Povie, Y. Segawa, T. Nishihara, Y. Miyauchi, K. Itami, Science 2017, 356, 172–175;
- 2bK. Y. Cheung, S. Gui, C. Deng, H. Liang, Z. Xia, Z. Liu, L. Chi, Q. Miao, Chem 2019, 5, 838–847;
- 2cX. Lu, T. Y. Gopalakrishna, Y. Han, Y. Ni, Y. Zou, J. Wu, J. Am. Chem. Soc. 2019, 141, 5934–5941.
- 3M. D. Watson, F. Jäckel, N. Severin, J. P. Rabe, K. Müllen, J. Am. Chem. Soc. 2004, 126, 1402–1407.
- 4
- 4aS. Akine, T. Onuma, T. Nabeshima, New J. Chem. 2018, 42, 9369–9372;
- 4bG. Li, T. Matsuno, Y. Han, H. Phan, S. Wu, Q. Jiang, Y. Zou, H. Isobe, J. Wu, Angew. Chem. Int. Ed. 2020, 59, 9727–9735; Angew. Chem. 2020, 132, 9814–9822.
- 5S. E. Lewis, Chem. Soc. Rev. 2015, 44, 2221–2304.
- 6
- 6aM. Quernheim, F. E. Golling, W. Zhang, M. Wagner, H.-J. Räder, T. Nishiuchi, K. Müllen, Angew. Chem. Int. Ed. 2015, 54, 10341–10346; Angew. Chem. 2015, 127, 10482–10487;
- 6bD. Lu, H. Wu, Y. Dai, H. Shi, X. Shao, S. Yang, J. Yang, P. Du, Chem. Commun. 2016, 52, 7164–7167;
- 6cD. Lu, G. Zhuang, H. Wu, S. Wang, S. Yang, P. Du, Angew. Chem. Int. Ed. 2017, 56, 158–162; Angew. Chem. 2017, 129, 164–168;
- 6dS. Cui, G. Zhuang, D. Lu, Q. Huang, H. Jia, Y. Wang, S. Yang, P. Du, Angew. Chem. Int. Ed. 2018, 57, 9330–9335; Angew. Chem. 2018, 130, 9474–9479;
- 6eQ. Huang, G. Zhuang, H. Jia, M. Qian, S. Cui, S. Yang, P. Du, Angew. Chem. Int. Ed. 2019, 58, 6244–6249; Angew. Chem. 2019, 131, 6310–6315;
- 6fY. Nakagawa, R. Sekiguchi, J. Kawakami, S. Ito, Org. Biomol. Chem. 2019, 17, 6843–6853;
- 6gH. Jia, G. Zhuang, Q. Huang, J. Wang, Y. Wu, S. Cui, S. Yang, P. Du, Chem. Eur. J. 2020, 26, 2159–2163.
- 7
- 7aI. R. Márquez, S. Castro-Fernández, A. Millán, A. G. Campaña, Chem. Commun. 2018, 54, 6705–6718;
- 7bS. H. Pun, Q. Miao, Acc. Chem. Res. 2018, 51, 1630–1642.
- 8
- 8aK. Yamamoto, T. Harada, M. Nakazaki, T. Naka, Y. Kai, S. Harada, N. Kasai, J. Am. Chem. Soc. 1983, 105, 7171–7172;
- 8bJ. Luo, X. Xu, R. Mao, Q. Miao, J. Am. Chem. Soc. 2012, 134, 13796–13803;
- 8cK. Kawasumi, Q. Zhang, Y. Segawa, L. T. Scott, K. Itami, Nat. Chem. 2013, 5, 739–744;
- 8dK. Y. Cheung, X. Xu, Q. Miao, J. Am. Chem. Soc. 2015, 137, 3910–3914;
- 8eN. Fukui, T. Kim, D. Kim, A. Osuka, J. Am. Chem. Soc. 2017, 139, 9075–9088;
- 8fS. H. Pun, C. K. Chan, J. Luo, Z. Liu, Q. Miao, Angew. Chem. Int. Ed. 2018, 57, 1581–1586; Angew. Chem. 2018, 130, 1597–1602.
- 9
- 9aT. Fujikawa, Y. Segawa, K. Itami, J. Org. Chem. 2017, 82, 7745–7749;
- 9bC. M. Cruz, S. Castro-Fernández, E. Maçôas, J. M. Cuerva, A. G. Campaña, Angew. Chem. Int. Ed. 2018, 57, 14782–14786; Angew. Chem. 2018, 130, 14998–15002;
- 9cC. M. Cruz, I. R. Márquez, I. F. A. Mariz, V. Blanco, C. Sánchez-Sánchez, J. M. Sobrado, J. A. Martín-Gago, J. M. Cuerva, E. Maçôas, A. G. Campaña, Chem. Sci. 2018, 9, 3917–3924;
- 9dC. M. Cruz, I. R. Márquez, S. Castro-Fernández, J. M. Cuerva, E. Maçôas, A. G. Campaña, Angew. Chem. Int. Ed. 2019, 58, 8068–8072; Angew. Chem. 2019, 131, 8152–8156.
- 10
- 10aT. Lenosky, X. Gonze, M. Teter, V. Elser, Nature 1992, 355, 333–335;
- 10bN. Park, M. Yoon, S. Berber, J. Ihm, E. Osawa, D. Tománek, Phys. Rev. Lett. 2003, 91, 237204;
- 10cD. Odkhuu, D. H. Jung, H. Lee, S. S. Han, S.-H. Choi, R. S. Ruoff, N. Park, Carbon 2014, 66, 39–47.
- 11S. Castro-Fernández, C. M. Cruz, I. F. A. Mariz, I. R. Márquez, V. G. Jiménez, L. Palomino-Ruiz, J. M. Cuerva, E. Maçôas, A. G. Campaña, Angew. Chem. Int. Ed. 2020, 59, 7139–7145; Angew. Chem. 2020, 132, 7205–7211.
- 12I. R. Márquez, N. Fuentes, C. M. Cruz, V. Puente-Muñoz, L. Sotorrios, M. L. Marcos, D. Choquesillo-Lazarte, B. Biel, L. Crovetto, E. Gómez-Bengoa, M. T. González, R. Martin, J. M. Cuerva, A. G. Campaña, Chem. Sci. 2017, 8, 1068–1074.
- 13The possibility of the existence of the syn and anti conformers is also supported by the two sets of signals in a slow-exchange regime observed in the 1H NMR spectrum of 4 recorded at 256 K (Figures S13,S14).
- 14The reason behind the behavior observed in different solvents is not completely clear. Assuming that the interconversion barrier between conformers is not significantly affected by the solvent, one single set of signals should imply that the system is biased towards a major isomer. Possible explanations for this are the higher dipole moment of o-DCB, which would stabilize the most polar isomer, or the different supramolecular interactions of the solvent molecules with each conformer, which could estabilize one of them preferentially. However, we cannot unambiguously give a reason to explain this behavior.
- 15The effective size was calculated by subtracting twice the van der Waals radius of C (1.7 Å) from the measured distances.
- 16Miao and co-workers reported the cocrystallization of an extended heptagon-containing PAH with C60, suggesting the establishment of supramolecular interactions between both components. However, as pointed by the authors, the poor quality of the data precluded the full refinement of the structure, which was not presented. X. Gu, H. Li, B. Shan, Z. Liu, Q. Miao, Org. Lett. 2017, 19, 2246–2249.
- 17Y. Guan, M. L. Jones, A. E. Miller, S. E. Wheeler, Phys. Chem. Chem. Phys. 2017, 19, 18186–18193.
- 18M. Chu, A. N. Scioneaux, C. S. Hartley, J. Org. Chem. 2014, 79, 9009–9017.
- 19Non-linear least-squares curve fitting were carried out with the online software Bindfit. Website: http://supramolecular.org/.
- 20P. Thordarson, Chem. Soc. Rev. 2011, 40, 1305–1323.
- 21
- 21aD. Canevet, E. M. Pérez, N. Martín, Angew. Chem. Int. Ed. 2011, 50, 9248–9259; Angew. Chem. 2011, 123, 9416–9427;
- 21bE. M. Pérez, N. Martín, Chem. Soc. Rev. 2015, 44, 6425–6433;
- 21cC. García-Simón, M. Costas, X. Ribas, Chem. Soc. Rev. 2016, 45, 40–62;
- 21dA. Sygula, Synlett 2016, 27, 2070–2080;
- 21eS. Selmani, D. J. Schipper, Chem. Eur. J. 2019, 25, 6673–6692.
- 22The addition of fullerenes to 1 also resulted in the quenching of its fluorescence. However, an inner filter effect due to the strong fullerene absorbance at the excitation wavelength avoids any reliable estimation of the binding constant.
- 23For selected examples of organic receptors able to selectively bind to different fullerenes, see, for example, references [2c, 4b, 6c,d] and:
- 23aE. Huerta, G. A. Metselaar, A. Fragoso, E. Santos, C. Bo, J. de Mendoza, Angew. Chem. Int. Ed. 2007, 46, 202–205; Angew. Chem. 2007, 119, 206–209;
- 23bC. Zhang, Q. Wang, H. Long, W. Zhang, J. Am. Chem. Soc. 2011, 133, 20995–21001;
- 23cM.-J. Li, C.-H. Huang, C.-C. Lai, S.-H. Chiu, Org. Lett. 2012, 14, 6146–6149;
- 23dD.-C. Yang, M. Li, C.-F. Chen, Chem. Commun. 2017, 53, 9336–9339;
- 23eY. Shi, K. Cai, H. Xiao, Z. Liu, J. Zhou, D. Shen, Y. Qiu, Q.-H. Guo, C. Stern, M. R. Wasielewski, F. Diederich, W. A. Goddard III, J. F. Stoddart, J. Am. Chem. Soc. 2018, 140, 13835–13842.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.