Electrochemical Synthesis of Thienoacene Derivatives: Transition-Metal-Free Dehydrogenative C−S Coupling Promoted by a Halogen Mediator
Corresponding Author
Dr. Koichi Mitsudo
Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530 Japan
Search for more papers by this authorRen Matsuo
Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530 Japan
Search for more papers by this authorToki Yonezawa
Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530 Japan
Search for more papers by this authorHaruka Inoue
Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530 Japan
Search for more papers by this authorDr. Hiroki Mandai
Department of Medical Technology, Gifu University of Medical Science, 4-3-3 Nijigaoka, Kani, Gifu 5, 09-0293 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Seiji Suga
Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530 Japan
Search for more papers by this authorCorresponding Author
Dr. Koichi Mitsudo
Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530 Japan
Search for more papers by this authorRen Matsuo
Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530 Japan
Search for more papers by this authorToki Yonezawa
Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530 Japan
Search for more papers by this authorHaruka Inoue
Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530 Japan
Search for more papers by this authorDr. Hiroki Mandai
Department of Medical Technology, Gifu University of Medical Science, 4-3-3 Nijigaoka, Kani, Gifu 5, 09-0293 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Seiji Suga
Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530 Japan
Search for more papers by this authorAbstract
The first electrochemical dehydrogenative C−S bond formation leading to thienoacene derivatives is described. Several thienoacene derivatives were synthesized by dehydrogenative C−H/S−H coupling. The addition of nBu4NBr, which catalytically promoted the reaction as a halogen mediator, was essential.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202001149-sup-0001-misc_information.pdf8.6 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aR. S. Keri, K. Chand, S. Budagumpi, S. Balappa Somappa, S. A. Patil, B. M. Nagaraja, Eur. J. Med. Chem. 2017, 138, 1002;
- 1bE. A. Ilardi, E. Vitaku, J. T. Njardarson, J. Med. Chem. 2014, 57, 2832.
- 2
- 2aF. Dikcal, T. Ozturk, M. E. Cinar, Org. Commun. 2017, 10, 56;
- 2bL. Li, C. Zhao, H. Wang, Chem. Rec. 2016, 16, 797;
- 2cK. Takimiya, M. Nakano, H. Sugino, I. Osaka, Synth. Met. 2016, 217, 68;
- 2dM. E. Cinar, T. Ozturk, Chem. Rev. 2015, 115, 3036.
- 3
- 3aV. Magne, L. T. Ball, Chem. Eur. J. 2019, 25, 8903;
- 3bR. N. Gaykar, S. Bhattacharjee, A. T. Biju, Org. Lett. 2019, 21, 737;
- 3cJ.-A. García-López, M. Çetin, M. F. Greaney, Angew. Chem. Int. Ed. 2015, 54, 2156; Angew. Chem. 2015, 127, 2184;
- 3dB. Bang-Andersen, T. Ruhland, M. Jørgensen, G. Smith, K. Frederiksen, K. G. Jensen, H. Zhong, S. M. Nielsen, S. Hogg, A. Mørk, T. B. Stensbøl, J. Med. Chem. 2011, 54, 3206.
- 4
- 4aM. Goldust, E. Rezaee, S. Masoudnia, R. Raghifar, Ann. Parasitol. 2013, 59, 119;
- 4bT. Al Nakib, M. J. Meegan, M. L. Burke, J. Chem. Res. Synop. 1994, 170;
- 4cM. Raga, C. Palacin, J. M. Castello, J. A. Ortiz, M. R. Cuberes, M. Moreno-Manas, Eur. J. Med. Chem. 1986, 21, 329.
- 5Selected papers:
- 5aY. Yuan, G. Giri, A. L. Ayzner, A. P. Zoombelt, S. C. B. Mannsfeld, J. Chen, D. Nordlund, M. F. Toney, J. Huang, Z. Bao, Nat. Commun. 2014, 5, 3005;
- 5bH. Ebata, T. Izawa, E. Miyazaki, K. Takimiya, M. Ikeda, H. Kuwabara, T. Yui, J. Am. Chem. Soc. 2007, 129, 15732;
- 5cC. Grigoriadis, C. Niebel, C. Ruzie, Y. H. Geerts, G. Floudas, J. Phys. Chem. B 2014, 118, 1443.
- 6
- 6aT. Okamoto, C. Mitsui, M. Yamagishi, K. Nakahara, J. Soeda, Y. Hirose, K. Miwa, H. Sato, A. Yamano, T. Matsushita, T. Uemura, J. Takeya, Adv. Mater. 2013, 25, 6392–6397;
- 6bI. Piquero-Zulaica, J. Lobo-Checa, A. Sadeghi, Z. M. Abd El-Fattah, C. Mitsui, T. Okamoto, R. Pawlak, T. Meier, A. Arnau, J. E. Ortega, J. Takeya, S. Goedecker, E. Meyer, S. Kawai, Nat. Commun. 2017, 8, 787.
- 7C.-F. Lee, Y.-C. Liu, S. S. Badsara, Chem. Asian J. 2014, 9, 706–722.
- 8Selected papers:
- 8aC. Dai, Z. Xu, F. Huang, Z. Yu, Y.-F. Gao, J. Org. Chem. 2012, 77, 4414;
- 8bS. Ranjit, R. Lee, D. Haryadi, C. Shen, J. Wu, P. Zhang, K.-W. Huang, X. Liu, J. Org. Chem. 2011, 76, 8999;
- 8cT. Gensch, F. J. R. Klauck, F. Glorius, Angew. Chem. Int. Ed. 2016, 55, 11287; Angew. Chem. 2016, 128, 11457;
- 8dM. Iwasaki, Y. Nishihara, Dalton Trans. 2016, 45, 15278–15284;
- 8eS. Maity, U. Karmakar, R. Samanta, Chem. Commun. 2017, 53, 12197;
- 8fA. Mandal, S. Dana, H. Sahoo, G. S. Grandhi, M. Baidya, Org. Lett. 2017, 19, 2430;
- 8gS. P. Yang, B. Y. Feng, Y. D. Yang, J. Org. Chem. 2017, 82, 12430;
- 8hY. S. Kang, P. Zhang, M. Y. Li, Y. K. Chen, H. J. Xu, J. Zhao, W. Y. Sun, J. Q. Yu, Y. Lu, Angew. Chem. Int. Ed. 2019, 58, 9099; Angew. Chem. 2019, 131, 9197.
- 9
- 9aM. Yan, Y. Kawamata, P. S. Baran, Chem. Rev. 2017, 117, 13230;
- 9bJ. Yoshida, A. Shimizu, R. Hayashi, Chem. Rev. 2018, 118, 4702;
- 9cS. R. Waldvogel, B. Janza, Angew. Chem. Int. Ed. 2014, 53, 7122; Angew. Chem. 2014, 126, 7248;
- 9dH. Wang, X. Gao, Z. Lv, T. Abdelilah, A. Lei, Chem. Rev. 2019, 119, 6769.
- 10Representative reports:
- 10aN. Fu, G. S. Sauer, A. Saha, A. Loo, S. Lin, Science 2017, 357, 575;
- 10bM. Gong, J.-M. Huang, Chem. Eur. J. 2016, 22, 14293;
- 10cL.-S. Kang, M.-H. Luo, C. M. Lam, L.-M. Hu, R. D. Little, C.-C. Zeng, Green Chem. 2016, 18, 3767;
- 10dP. Qian, J.-H. Su, Y. Wang, M. Bi, Z. Zha, Z. Wang, J. Org. Chem. 2017, 82, 6434;
- 10eH.-B. Zhao, Z.-W. Hou, Z.-J. Liu, Z.-F. Zhou, J. Song, H.-C. Xu, Angew. Chem. Int. Ed. 2017, 56, 587; Angew. Chem. 2017, 129, 602;
- 10fA. Kehl, V. M. Breising, D. Schollmeyer, S. R. Waldvogel, Chem. Eur. J. 2018, 24, 17230;
- 10gJ. Li, W. Huang, J. Chen, L. He, X. Cheng, G. Li, Angew. Chem. Int. Ed. 2018, 57, 5695; Angew. Chem. 2018, 130, 5797;
- 10hS. Zhang, L. Li, M. Xue, R. Zhang, K. Xu, K. Xu, C. Zeng, Org. Lett. 2018, 20, 3443–3446;
- 10iX. Chang, Q. Zhang, C. Guo, Org. Lett. 2019, 21, 10–13;
- 10jM.-L. Feng, S.-Q. Li, H.-Z. He, L.-Y. Xi, S.-Y. Chen, X.-Q. Yu, Green Chem. 2019, 21, 1619;
- 10kY. Liu, L. Xue, B. Shi, F. Bu, D. Wang, L. Lu, R. Shi, A. Lei, Chem. Commun. 2019, 55, 14922.
- 11
- 11aE. J. Horn, B. R. Rosen, Y. Chen, J. Tang, K. Chen, M. D. Eastgate, P. S. Baran, Nature 2016, 533, 77;
- 11bY. Kawamata, M. Yan, Z. Liu, D.-H. Bao, J. Chen, J. T. Starr, P. S. Baran, J. Am. Chem. Soc. 2017, 139, 7448–7451;
- 11cY. Shih, C. Ke, C. Pan, Y. Huang, RSC Adv. 2013, 3, 7330–7336;
- 11dS. Zhang, F. Lian, M. Xue, T. Qin, L. Li, X. Zhang, K. Xu, Org. Lett. 2017, 19, 6622;
- 11eS. Zhang, L. Li, H. Wang, Q. Li, W. Liu, K. Xu, C. Zeng, Org. Lett. 2018, 20, 252;
- 11fL. Zhang, Z. Zhang, J. Zhang, K. Li, F. Mo, Green Chem. 2018, 20, 3916.
- 12
- 12aP. Wang, S. Tang, P. Huang, A. Lei, Angew. Chem. Int. Ed. 2017, 56, 3009; Angew. Chem. 2017, 129, 3055;
- 12bK. A. Ogawa, A. J. Boydston, Org. Lett. 2014, 16, 1928;
- 12cP. Wang, S. Tang, A. W. Lei, Green Chem. 2017, 19, 2092;
- 12dA. A. Folgueiras-Amador, X. Y. Qian, H. C. Xu, T. Wirth, Chem. Eur. J. 2018, 24, 487;
- 12eS. Liang, C.-C. Zeng, H.-Y. Tian, B.-G. Sun, X.-G. Luo, F.-z. Ren, Adv. Synth. Catal. 2018, 360, 1444;
- 12fD. Liu, H. X. Ma, P. Fang, T. S. Mei, Angew. Chem. Int. Ed. 2019, 58, 5033; Angew. Chem. 2019, 131, 5087;
- 12gC. Huang, X. Y. Qian, H. C. Xu, Angew. Chem. Int. Ed. 2019, 58, 6650; Angew. Chem. 2019, 131, 6722.
- 13
- 13aK. Mitsudo, S. Tanaka, R. Isobuchi, T. Inada, H. Mandai, T. Korenaga, A. Wakamiya, Y. Murata, S. Suga, Org. Lett. 2017, 19, 2564;
- 13bK. Mitsudo, Y. Kurimoto, H. Mandai, S. Suga, Org. Lett. 2017, 19, 2821;
- 13cK. Mitsudo, H. Sato, A. Yamasaki, N. Kamimoto, J. Goto, H. Mandai, S. Suga, Org. Lett. 2015, 17, 4858;
- 13dK. Mitsudo, S. Shimohara, J. Mizoguchi, H. Mandai, S. Suga, Org. Lett. 2012, 14, 2702.
- 14
- 14aK. Mitsudo, J. Yamamoto, T. Akagi, A. Yamashita, M. Haisa, K. Yoshioka, H. Mandai, K. Ueoka, C. Hempel, J. Yoshida, S. Suga, Beilstein J. Org. Chem. 2018, 14, 1192;
- 14bN. Kamimoto, N. Nakamura, A. Tsutsumi, H. Mandai, K. Mitsudo, A. Wakamiya, Y. Murata, J. Hasegawa, S. Suga, Asian J. Org. Chem. 2016, 5, 373;
- 14cK. Mitsudo, N. Kamimoto, H. Murakami, H. Mandai, A. Wakamiya, Y. Murata, S. Suga, Org. Biomol. Chem. 2012, 10, 9562;
- 14dK. Mitsudo, T. Shiraga, J. Mizukawa, S. Suga, H. Tanaka, Chem. Commun. 2010, 46, 9256;
- 14eK. Mitsudo, T. Kaide, E. Nakamoto, K. Yoshida, H. Tanaka, J. Am. Chem. Soc. 2007, 129, 2246.
- 15An iodine-mediated dehydrogenative cyclization of 1 a leading to BTBF was already reported, but the use of excess amount of iodine (3 equiv), high reaction temperature (dioxane, reflux) and long reaction time (72 h) were required and only 21 % yield of BTBF was obtained: K. Černovská, M. Nič, P. Pihera, J. Svoboda, Collect. Czech. Chem. Commun. 2000, 65, 1939.
- 16Br3− would be a potent candidate of [Br+] under the reaction conditions. See: T. Takiguchi, T. Nonaka, Bull. Chem. Soc. Jpn. 1987, 60, 3137.
- 17For the cyclic voltammograms, see the Supporting Information.
- 18
- 18aS. Torii, Electroorganic Syntheses, Methods, and Applications, Part 1: Oxidations, Kodansha & VCH, Tokyo & Weinheim, 1985;
- 18bT. Shono, Y. Matsumura, K. Inoue, J. Am. Chem. Soc. 1984, 106, 6075;
- 18cM. Kimura, N. Kuriki, M. Inaishi, Y. Sawaki, Tetrahedron Lett. 1984, 25, 4665;
- 18dK. F. Babu, R. Sivasubramanian, M. Noel, M. A. Kulandainathan, Electrochim. Acta 2011, 56, 9797;
- 18eT. Inokuchi, S. Matsumoto, S. Torii, J. Org. Chem. 1991, 56, 2416;
- 18fS. Torii, K. Uneyama, H. Tanaka, T. Yamanaka, T. Yasuda, M. Ono, Y. Kohmoto, J. Org. Chem. 1981, 46, 3312;
- 18gK. Mitsudo, T. Kawaguchi, S. Miyahara, W. Matsuda, M. Kuroboshi, H. Tanaka, Org. Lett. 2005, 7, 4649;
- 18hK. Fujimoto, H. Maekawa, Y. Matsubara, I. Nishiguchi, Chem. Lett. 1996, 25, 143.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.