Ligand-Enabled β-Methylene C(sp3)−H Arylation of Masked Aliphatic Alcohols
Dr. Guoqin Xia
Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037 USA
Search for more papers by this authorZhe Zhuang
Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037 USA
Search for more papers by this authorLuo-Yan Liu
Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037 USA
Search for more papers by this authorProf. Dr. Stuart L. Schreiber
Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, 02142 USA
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138 USA
Search for more papers by this authorCorresponding Author
Dr. Bruno Melillo
Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037 USA
Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, 02142 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Jin-Quan Yu
Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037 USA
Search for more papers by this authorDr. Guoqin Xia
Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037 USA
Search for more papers by this authorZhe Zhuang
Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037 USA
Search for more papers by this authorLuo-Yan Liu
Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037 USA
Search for more papers by this authorProf. Dr. Stuart L. Schreiber
Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, 02142 USA
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138 USA
Search for more papers by this authorCorresponding Author
Dr. Bruno Melillo
Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037 USA
Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, 02142 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Jin-Quan Yu
Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037 USA
Search for more papers by this authorAbstract
Despite recent advances, reactivity and site-selectivity remain significant obstacles for the practical application of C(sp3)−H bond functionalization methods. Here, we describe a system that combines a salicylic-aldehyde-derived L,X-type directing group with an electron-deficient 2-pyridone ligand to enable the β-methylene C(sp3)−H arylation of aliphatic alcohols, which has not been possible previously. Notably, this protocol is compatible with heterocycles embedded in both alcohol substrates and aryl coupling partners. A site- and stereo-specific annulation of dihydrocholesterol and the synthesis of a key intermediate of englitazone illustrate the practicality of this method.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202000632-sup-0001-misc_information.pdf17.2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1For selected examples, see
- 1aH.-X. Dai, A. F. Stepan, M. S. Plummer, Y.-H. Zhang, J.-Q. Yu, J. Am. Chem. Soc. 2011, 133, 7222–7228;
- 1bB. R. Rosen, L. R. Simke, P. S. Thuy-Boun, D. D. Dixon, J.-Q. Yu, P. S. Baran, Angew. Chem. Int. Ed. 2013, 52, 7317–7320; Angew. Chem. 2013, 125, 7458–7461;
- 1cJ. He, S. Li, Y. Deng, H. Fu, B. N. Laforteza, J. E. Spangler, A. Homs, J.-Q. Yu, Science 2014, 343, 1216–1220;
- 1dW. Gong, G. Zhang, T. Liu, R. Giri, J.-Q. Yu, J. Am. Chem. Soc. 2014, 136, 16940–16946;
- 1eR. A. Leal, C. Bischof, Y. V. Lee, S. Sawano, C. C. McAtee, L. N. Latimer, Z. N. Russ, J. E. Dueber, J.-Q. Yu, R. Sarpong, Angew. Chem. Int. Ed. 2016, 55, 11824–11828; Angew. Chem. 2016, 128, 12003–12007;
- 1fM. Shang, K. S. Feu, J. C. Vantourout, L. M. Barton, H. L. Osswald, N. Kato, K. Gagaring, C. W. McNamara, G. Chen, L. Hu, S. Ni, P. Fernandez-Canelas, M. Chen, R. R. Merchant, T. Qin, S. L. Schreiber, B. Melillo, J.-Q. Yu, P. S. Baran, Proc. Natl. Acad. Sci. USA 2019, 116, 8721–8727.
- 2For recent reviews on C(sp3)−H functionalization, see
- 2aT. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147–1169;
- 2bL. Ackermann, Chem. Rev. 2011, 111, 1315–1345;
- 2cO. Daugulis, J. Roane, L. D. Tran, Acc. Chem. Res. 2015, 48, 1053–1064;
- 2dJ. He, M. Wasa, K. S. L. Chan, Q. Shao, J.-Q. Yu, Chem. Rev. 2017, 117, 8754–8786.
- 3For examples on aza-cyclic substrate C(sp3)−H functionalization, see
- 3aD. P. Affron, O. A. Davis, J. A. Bull, Org. Lett. 2014, 16, 4956–4959;
- 3bS. Ye, W. Yang, T. Coon, D. Fanning, T. Neubert, D. Stamos, J.-Q. Yu, Chem. Eur. J. 2016, 22, 4748–4752;
- 3cJ. J. Topczewski, P. J. Cabrera, N. I. Saper, M. S. Sanford, Nature 2016, 531, 220–224;
- 3dM. Maetani, J. Zoller, B. Melillo, O. Verho, N. Kato, J. Pu, E. Comer, S. L. Schreiber, J. Am. Chem. Soc. 2017, 139, 11300–11306;
- 3eD. Antermite, D. P. Affron, J. A. Bull, Org. Lett. 2018, 20, 3948–3952.
- 4For selected examples using heteroaryl iodides as coupling partners, see
- 4aY.-Q. Chen, Z. Wang, Y. Wu, S. R. Wisniewski, J. X. Qiao, W. R. Ewing, M. D. Eastgate, J.-Q. Yu, J. Am. Chem. Soc. 2018, 140, 17884–17894;
- 4bR.-Y. Zhu, L.-Y. Liu, H. S. Park, K. Hong, Y. Wu, C. H. Senanayake, J.-Q. Yu, J. Am. Chem. Soc. 2017, 139, 16080–16083;
- 4cR.-Y. Zhu, Z.-Q. Li, H. S. Park, C. H. Senanayake, J.-Q. Yu, J. Am. Chem. Soc. 2018, 140, 3564–3658.
- 5
- 5aJ. Falbe, H. Bahrmann, W. Lipps, D. Mayer, G. D. Frey, Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2000;
- 5bF. Mo, J. R. Tabor, G. Dong, Chem. Lett. 2014, 43, 264–271;
- 5cC. G. Espino, J. Du Bois, Angew. Chem. Int. Ed. 2001, 40, 598–600;
10.1002/1521-3773(20010202)40:3<598::AID-ANIE598>3.0.CO;2-9 CAS PubMed Web of Science® Google ScholarAngew. Chem. 2001, 113, 618–620;
- 5dC. G. Espino, P. M. Wehn, J. Chow, J. Du Bois, J. Am. Chem. Soc. 2001, 123, 6935–6936;
- 5eJ.-L. Liang, S.-X. Yuan, J.-S. Huang, W.-Y. Yu, C.-M. Che, Angew. Chem. Int. Ed. 2002, 41, 3465–3468;
10.1002/1521-3773(20020916)41:18<3465::AID-ANIE3465>3.0.CO;2-D CAS PubMed Web of Science® Google ScholarAngew. Chem. 2002, 114, 3615–3618.
- 6
- 6aY. Lu, D.-H. Wang, K. M. Engle, J.-Q. Yu, J. Am. Chem. Soc. 2010, 132, 5916–5921;
- 6bX. Wang, Y. Lu, H.-X. Dai, J.-Q. Yu, J. Am. Chem. Soc. 2010, 132, 12203–12205;
- 6cY. Lu, D. Leow, X. Wang, K. M. Engle, J.-Q. Yu, Chem. Sci. 2011, 2, 967–971.
- 7
- 7aA. Hu, J.-J. Guo, H. Pan, H. Tang, Z. Gao, Z. Zuo, J. Am. Chem. Soc. 2018, 140, 1612–1616;
- 7bG.-X. Li, X. Hu, G. He, G. Chen, Chem. Sci. 2019, 10, 688–693.
- 8
- 8aE. M. Simmons, J. F. Hartwig, Nature 2012, 483, 70–73;
- 8bB. Li, M. Driess, J. F. Hartwig, J. Am. Chem. Soc. 2014, 136, 6586–6589;
- 8cA. Bunescu, T. W. Butcher, J. F. Hartwig, J. Am. Chem. Soc. 2018, 140, 1502–1507;
- 8dC. Karmel, B. Li, J. F. Hartwig, J. Am. Chem. Soc. 2018, 140, 1460–1470.
- 9
- 9aZ. Ren, F. Mo, G. Dong, J. Am. Chem. Soc. 2012, 134, 16991–16994;
- 9bY. Xu, G. Yan, Z. Ren, G. Dong, Nat. Chem. 2015, 7, 829–834.
- 10Y. J. Mao, S. J. Lou, H. Y. Hao, D. Q. Xu, Angew. Chem. Int. Ed. 2018, 57, 14085–14089; Angew. Chem. 2018, 130, 14281–14285.
- 11L. Jin, X. Zeng, S. Li, X. Hong, G. Qiu, P. Liu, Chem. Commun. 2017, 53, 3986–3989.
- 12K. Tanaka, W. R. Ewing, J.-Q. Yu, J. Am. Chem. Soc. 2019, 141, 15494–15497.
- 13G. Xia, J. Weng, L. Liu, P. Verma, Z. Li, J.-Q. Yu, Nat. Chem. 2019, 11, 571–577.
- 14P. Wang, P. Verma, G. Xia, J. Shi, J. X. Qiao, S. Tao, P. T. W. Cheng, M. A. Poss, M. E. Farmer, K.-S. Yeung, J.-Q. Yu, Nature 2017, 551, 489–493.
- 15B.-X. Wang, Y.-J. Mao, H.-Y. Hao, Q.-Z. Wu, K. Zhou, S.-J. Lou, D.-Q. Xu, Chem. Commun. 2019, 55, 7049–7052.
- 16For selected reviews, see
- 16aA. P. Taylor, R. P. Robinson, Y. M. Fobian, D. C. Blakemore, L. H. Jonesb, O. Fadeyi, Org. Biomol. Chem. 2016, 14, 6611–6637;
- 16bM. Baumann, I. R. Baxendale, Beilstein J. Org. Chem. 2013, 9, 2265–2319.
- 17N. Hoshiya, T. Kobayashi, M. Arisawa, S. Shuto, Org. Lett. 2013, 15, 6202–6205.
- 18R. W. Stevenson, R. K. McPherson, P. E. Genereux, B. H. Danbury, D. K. Kreutter, Metabolism 1991, 40, 1268–1274.
- 19F. J. Urban, B. S. Moore, J. Heterocycl. Chem. 1992, 29, 431–438.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.