A Diffusion--Reaction Competition Mechanism to Tailor Lithium Deposition for Lithium-Metal Batteries
Xiao-Ru Chen
Beijing Key Laboratory of Green Chemical, Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorYu-Xing Yao
Beijing Key Laboratory of Green Chemical, Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorChong Yan
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081 P. R. China
Search for more papers by this authorRui Zhang
Beijing Key Laboratory of Green Chemical, Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorDr. Xin-Bing Cheng
Beijing Key Laboratory of Green Chemical, Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Qiang Zhang
Beijing Key Laboratory of Green Chemical, Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorXiao-Ru Chen
Beijing Key Laboratory of Green Chemical, Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorYu-Xing Yao
Beijing Key Laboratory of Green Chemical, Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorChong Yan
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081 P. R. China
Search for more papers by this authorRui Zhang
Beijing Key Laboratory of Green Chemical, Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorDr. Xin-Bing Cheng
Beijing Key Laboratory of Green Chemical, Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Qiang Zhang
Beijing Key Laboratory of Green Chemical, Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorAbstract
Lithium metal is recognized as one of the most promising anode materials owing to its ultrahigh theoretical specific capacity and low electrochemical potential. Nonetheless, dendritic Li growth has dramatically hindered the practical applications of Li metal anodes. Realizing spherical Li deposition is an effective approach to avoid Li dendrite growth, but the mechanism of spherical deposition is unknown. Herein, a diffusion-reaction competition mechanism is proposed to reveal the rationale of different Li deposition morphologies. By controlling the rate-determining step (diffusion or reaction) of Li deposition, various Li deposition scenarios are realized, in which the diffusion-controlled process tends to lead to dendritic Li deposition while the reaction-controlled process leads to spherical Li deposition. This study sheds fresh light on the dendrite-free Li metal anode and guides to achieve safe batteries to benefit future wireless and fossil-fuel-free world.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202000375-sup-0001-misc_information.pdf4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aK. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough, Mater. Res. Bull. 1980, 15, 783–789;
- 1bA. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, J. Electrochem. Soc. 1997, 144, 1188–1194;
- 1cM. Winter, B. Barnett, K. Xu, Chem. Rev. 2018, 118, 11433–11456;
- 1dG. Xu, X. Shangguan, S. Dong, X. Zhou, G. Cui, Angew. Chem. Int. Ed. 2020, 59, 3400–3415; Angew. Chem. 2020, 132, 3426–3442.
- 2
- 2aJ. M. Tarascon, M. Armand, Nature 2001, 414, 359–367;
- 2bA. S. Aricò, P. Bruce, B. Scrosati, J. M. Tarascon, W. Van Schalkwijk, Nat. Mater. 2005, 4, 366–377;
- 2cB. Dunn, H. Kamath, J. M. Tarascon, Science 2011, 334, 928–935;
- 2dY. M. Sun, N. A. Liu, Y. Cui, Nat. Energy 2016, 1, 16071.
- 3
- 3aS.-H. Chung, A. Manthiram, Adv. Mater. 2019, 31, 1901125;
- 3bM. Li, J. Lu, Z. W. Chen, K. Amine, Adv. Mater. 2018, 30, 1800561;
- 3cZ. P. Cano, D. Banham, S. Y. Ye, A. Hintennach, J. Lu, M. Fowler, Z. W. Chen, Nat. Energy 2018, 3, 279–289.
- 4
- 4aC. Niu, H. Pan, W. Xu, J. Xiao, J.-G. Zhang, L. Luo, C. Wang, D. Mei, J. Meng, X. Wang, Z. Liu, L. Mai, J. Liu, Nat. Nanotechnol. 2019, 14, 594–601;
- 4bB. Liu, Y. Zhang, G. Pan, C. Ai, S. Deng, S. Liu, Q. Liu, X. Wang, X. Xia, J. Tu, J. Mater. Chem. A 2019, 7, 21794–21801;
- 4cJ. Duan, W. Wu, A. M. Nolan, T. Wang, J. Wen, C. Hu, Y. Mo, W. Luo, Y. Huang, Adv. Mater. 2019, 31, 1807243;
- 4dM. Xie, X. Lin, Z. Huang, Y. Li, Y. Zhong, Z. Cheng, L. Yuan, Y. Shen, X. Lu, T. Zhai, Y. Huang, Adv. Funct. Mater. 2020, 30, 1905949.
- 5
- 5aX.-B. Cheng, C.-Z. Zhao, Y.-X. Yao, H. Liu, Q. Zhang, Chem 2019, 5, 74–96;
- 5bP. Shi, T. Li, R. Zhang, X. Shen, X.-B. Cheng, R. Xu, J.-Q. Huang, X.-R. Chen, H. Liu, Q. Zhang, Adv. Mater. 2019, 31, 1807131;
- 5cP. Albertus, S. Babinec, S. Litzelman, A. Newman, Nat. Energy 2018, 3, 16–21.
- 6
- 6aJ. Kasemchainan, S. Zekoll, D. S. Jolly, Z. Y. Ning, G. O. Hartley, J. Marrow, P. G. Bruce, Nat. Mater. 2019, 18, 1105–1111;
- 6bQ. Pang, L. Zhou, L. F. Nazar, Proc. Natl. Acad. Sci. USA 2018, 115, 12389–12394.
- 7
- 7aB. Liu, J. G. Zhang, W. Xu, Joule 2018, 2, 833–845;
- 7bX.-R. Chen, B.-Q. Li, C. Zhu, R. Zhang, X.-B. Cheng, J.-Q. Huang, Q. Zhang, Adv. Energy Mater. 2019, 9, 1901932;
- 7cC. Yan, H.-R. Li, X. Chen, X.-Q. Zhang, X.-B. Cheng, R. Xu, J.-Q. Huang, Q. Zhang, J. Am. Chem. Soc. 2019, 141, 9422–9429.
- 8
- 8aR. Zhang, X.-R. Chen, X. Chen, X.-B. Cheng, X.-Q. Zhang, C. Yan, Q. Zhang, Angew. Chem. Int. Ed. 2017, 56, 7764–7768; Angew. Chem. 2017, 129, 7872–7876;
- 8bL. Chen, X. Fan, X. Ji, J. Chen, S. Hou, C. Wang, Joule 2019, 3, 732–744;
- 8cB.-Q. Li, X.-R. Chen, X. Chen, C.-X. Zhao, R. Zhang, X.-B. Cheng, Q. Zhang, Research 2019, 4608940.
- 9Y. Y. Liu, D. C. Lin, Y. Z. Li, G. X. Chen, A. Pei, O. Nix, Y. B. Li, Y. Cui, Nat. Commun. 2018, 9, 3656.
- 10
- 10aX.-B. Cheng, R. Zhang, C.-Z. Zhao, Q. Zhang, Chem. Rev. 2017, 117, 10403–10473;
- 10bX.-B. Cheng, R. Zhang, C.-Z. Zhao, F. Wei, J.-G. Zhang, Q. Zhang, Adv. Sci. 2016, 3, 1500213.
- 11Z. Wang, C. Sun, Y. Shi, F. Qi, Q. Wei, X. Li, Z. Sun, B. An, F. Li, J. Power Sources 2019, 439, 227073.
- 12Y. Wang, Z. Wang, D. Lei, W. Lv, Q. Zhao, B. Ni, Y. Liu, B. Li, F. Kang, Y.-B. He, ACS Appl. Mater. Interfaces 2018, 10, 20244–20249.
- 13H.-J. Peng, J.-Q. Huang, X.-B. Cheng, Q. Zhang, Adv. Energy Mater. 2017, 7, 1700260.
- 14X. Chen, X.-R. Chen, T.-Z. Hou, B.-Q. Li, X.-B. Cheng, R. Zhang, Q. Zhang, Sci. Adv. 2019, 5, eaau7728.
- 15A. Wang, Q. Deng, L. Deng, X. Guan, J. Luo, Adv. Funct. Mater. 2019, 29, 1902630.
- 16P. Biswal, S. Stalin, A. Kludze, S. Choudhury, L. A. Archer, Nano Lett. 2019, 19, 8191–8200.
- 17
- 17aX.-Q. Zhang, X. Chen, L.-P. Hou, B.-Q. Li, X.-B. Cheng, J.-Q. Huang, Q. Zhang, ACS Energy Lett. 2019, 4, 411–416;
- 17bC. Yan, Y.-X. Yao, X. Chen, X.-B. Cheng, X.-Q. Zhang, J.-Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2018, 57, 14055–14059; Angew. Chem. 2018, 130, 14251–14255;
- 17cS.-J. Tan, J. Yue, X.-C. Hu, Z.-Z. Shen, W.-P. Wang, J.-Y. Li, T.-T. Zuo, H. Duan, Y. Xiao, Y.-X. Yin, R. Wen, Y.-G. Guo, Angew. Chem. Int. Ed. 2019, 58, 7802–7807; Angew. Chem. 2019, 131, 7884–7889.
- 18Q. Zhao, Z. Tu, S. Wei, K. Zhang, S. Choudhury, X. Liu, L. A. Archer, Angew. Chem. Int. Ed. 2018, 57, 992–996; Angew. Chem. 2018, 130, 1004–1008.
- 19C. Yan, X.-B. Cheng, Y.-X. Yao, X. Shen, B.-Q. Li, W.-J. Li, R. Zhang, J.-Q. Huang, H. Li, Q. Zhang, Adv. Mater. 2018, 30, 1804461.
- 20
- 20aU. V. Alpen, A. Rabenau, G. H. Talat, Appl. Phys. Lett. 1977, 30, 621–623;
- 20bT. Lapp, S. Skaarup, A. Hooper, Solid State Ionics 1983, 11, 97–103.
- 21F. Han, A. S. Westover, J. Yue, X. Fan, F. Wang, M. Chi, D. N. Leonard, N. Dudney, H. Wang, C. Wang, Nat. Energy 2019, 4, 187–196.
- 22R. Zhang, X.-B. Cheng, C.-Z. Zhao, H.-J. Peng, J.-L. Shi, J.-Q. Huang, J. Wang, F. Wei, Q. Zhang, Adv. Mater. 2016, 28, 2155–2162.
- 23A. Pei, G. Zheng, F. Shi, Y. Li, Y. Cui, Nano Lett. 2017, 17, 1132–1139.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.