General Strategy for Synthesis of Ordered Pt3M Intermetallics with Ultrasmall Particle Size
Bentian Zhang
The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Dr. Gengtao Fu
Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas, USA
These authors contributed equally to this work.
Search for more papers by this authorDr. Yutao Li
Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas, USA
Search for more papers by this authorLecheng Liang
The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641 China
Search for more papers by this authorNicholas S. Grundish
Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas, USA
Search for more papers by this authorProf. Yawen Tang
School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Prof. John B. Goodenough
Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas, USA
Search for more papers by this authorCorresponding Author
Prof. Zhiming Cui
The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641 China
Search for more papers by this authorBentian Zhang
The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Dr. Gengtao Fu
Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas, USA
These authors contributed equally to this work.
Search for more papers by this authorDr. Yutao Li
Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas, USA
Search for more papers by this authorLecheng Liang
The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641 China
Search for more papers by this authorNicholas S. Grundish
Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas, USA
Search for more papers by this authorProf. Yawen Tang
School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Prof. John B. Goodenough
Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas, USA
Search for more papers by this authorCorresponding Author
Prof. Zhiming Cui
The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641 China
Search for more papers by this authorAbstract
Controllable synthesis of atomically ordered intermetallic nanoparticles (NPs) is crucial to obtain superior electrocatalytic performance for fuel cell reactions, but still remains arduous. Herein, we demonstrate a novel and general hydrogel-freeze drying strategy for the synthesis of reduced graphene oxide (rGO) supported Pt3M (M=Mn, Cr, Fe, Co, etc.) intermetallic NPs (Pt3M/rGO-HF) with ultrasmall particle size (about 3 nm) and dramatic monodispersity. The formation of hydrogel prevents the aggregation of graphene oxide and significantly promotes their excellent dispersion, while a freeze-drying can retain the hydrogel derived three-dimensionally (3D) porous structure and immobilize the metal precursors with defined atomic ratio on GO support during solvent sublimation, which is not afforded by traditional oven drying. The subsequent annealing process produces rGO supported ultrasmall ordered Pt3M intermetallic NPs (≈3 nm) due to confinement effect of 3D porous structure. Such Pt3M intermetallic NPs exhibit the smallest particle size among the reported ordered Pt-based intermetallic catalysts. A detailed study of the synthesis of ordered intermetallic Pt3Mn/rGO catalyst is provided as an example of a generally applicable method. This study provides an economical and scalable route for the controlled synthesis of Pt-based intermetallic catalysts, which can pave a way for the commercialization of fuel cell technologies.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201916260-sup-0001-misc_information.pdf1.5 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aW. Xiao, W. Lei, M. Gong, H. L. Xin, D. Wang, ACS Catal. 2018, 8, 3237–3256;
- 1bY. Yan, J. S. Du, K. D. Gilroy, D. Yang, Y. Xia, H. Zhang, Adv. Mater. 2017, 29, 1605997;
- 1cS. Furukawa, T. Komatsu, ACS Catal. 2017, 7, 735–765;
- 1dE. Antolini, Appl. Catal. B 2017, 217, 201–213;
- 1eM. Shao, Q. Chang, J.-P. Dodelet, R. Chenitz, Chem. Rev. 2016, 116, 3594–3657;
- 1fM. Luo, Y. Sun, L. Wang, S. Guo, Adv. Energy Mater. 2017, 7, 1602073.
- 2
- 2aX. X. Du, Y. He, X. X. Wang, J. N. Wang, Energy Environ. Sci. 2016, 9, 2623–2632;
- 2bJ. Zhu, Y. Yang, L. Chen, W. Xiao, H. Liu, H. D. Abruña, D. Wang, Chem. Mater. 2018, 30, 5987–5995;
- 2cC. Jung, C. Lee, K. Bang, J. Lim, H. Lee, H. J. Ryu, E. Cho, H. M. Lee, ACS Appl. Mater. Interfaces 2017, 9, 31806–31815;
- 2dH. Chen, D. Wang, Y. Yu, K. A. Newton, D. A. Muller, H. Abruña, F. J. DiSalvo, J. Am. Chem. Soc. 2012, 134, 18453–18459;
- 2eW. Xiao, M. A. L. Cordeiro, G. Gao, A. Zheng, J. Wang, W. Lei, M. Gong, R. Lin, E. Stavitski, H. L. Xin, D. Wang, Nano Energy 2018, 50, 70–78.
- 3
- 3aB. C. Beard, P. N. Ross, J. Electrochem. Soc. 1990, 137, 3368–3374;
- 3bD. Wang, H. L. Xin, R. Hovden, H. Wang, Y. Yu, D. A. Muller, F. J. DiSalvo, H. D. Abruña, Nat. Mater. 2013, 12, 81;
- 3cX. X. Wang, S. Hwang, Y.-T. Pan, K. Chen, Y. He, S. G. Karakalos, H. Zhang, J. S. Spendelow, D. Su, G. Wu, Nano Lett. 2018, 18, 4163–4171.
- 4
- 4aL. Zou, J. Li, T. Yuan, Y. Zhou, X. Li, H. Yang, Nanoscale 2014, 6, 10686–10692;
- 4bZ. Cui, H. Chen, W. Zhou, M. Zhao, F. J. DiSalvo, Chem. Mater. 2015, 27, 7538–7545.
- 5
- 5aX. Ji, K. T. Lee, R. Holden, L. Zhang, J. Zhang, G. A. Botton, M. Couillard, L. F. Nazar, Nat. Chem. 2010, 2, 286;
- 5bD. Xia, G. Chen, Z. Wang, J. Zhang, S. Hui, D. Ghosh, H. Wang, Chem. Mater. 2006, 18, 5746–5749.
- 6
- 6aT. Ghosh, B. M. Leonard, Q. Zhou, F. J. DiSalvo, Chem. Mater. 2010, 22, 2190–2202;
- 6bZ. Cui, H. Chen, M. Zhao, D. Marshall, Y. Yu, H. Abruña, F. J. DiSalvo, J. Am. Chem. Soc. 2014, 136, 10206–10209.
- 7Z. Qi, C. Xiao, C. Liu, T. W. Goh, L. Zhou, R. Maligal-Ganesh, Y. Pei, X. Li, L. A. Curtiss, W. Huang, J. Am. Chem. Soc. 2017, 139, 4762–4768.
- 8M. Bele, P. Jovanovič, A. Pavlišič, B. Jozinović, M. Zorko, A. Rečnik, E. Chernyshova, S. Hočevar, N. Hodnik, M. Gaberšček, Chem. Commun. 2014, 50, 13124–13126.
- 9D. Y. DeSario, F. J. DiSalvo, Chem. Mater. 2014, 26, 2750–2757.
- 10J. S. Kanady, P. Leidinger, A. Haas, S. Titlbach, S. Schunk, K. Schierle-Arndt, E. J. Crumlin, C. H. Wu, A. P. Alivisatos, J. Am. Chem. Soc. 2017, 139, 5672–5675.
- 11
- 11aL. Bai, X. Wang, Q. Chen, Y. Ye, H. Zheng, J. Guo, Y. Yin, C. Gao, Angew. Chem. Int. Ed. 2016, 55, 15656–15661; Angew. Chem. 2016, 128, 15885–15890;
- 11bF. Yang, D. Deng, X. Pan, Q. Fu, X. Bao, Nat. Sci. Rev. 2015, 2, 183–201;
- 11cX. Jiang, J. Wang, T. Huang, G. Fu, Y. Tang, X. Qiu, J. Zhou, J.-M. Lee, J. Mater. Chem. A 2019, 7, 26243–26249.
- 12
- 12aJ. Kim, C. Rong, Y. Lee, J. P. Liu, S. Sun, Chem. Mater. 2008, 20, 7242–7245;
- 12bJ. Kim, Y. Lee, S. Sun, J. Am. Chem. Soc. 2010, 132, 4996–4997;
- 12cS. Yamamoto, Y. Morimoto, T. Ono, M. Takano, Appl. Phys. Lett. 2005, 87, 032503;
- 12dD. C. Lee, F. V. Mikulec, J. M. Pelaez, B. Koo, B. A. Korgel, J. Phys. Chem. B 2006, 110, 11160–11166;
- 12eT. Komatsu, M. Takasaki, K. Ozawa, S. Furukawa, A. Muramatsu, J. Phys. Chem. C 2013, 117, 10483–10491.
- 13D. Y. Chung, S. W. Jun, G. Yoon, S. G. Kwon, D. Y. Shin, P. Seo, J. M. Yoo, H. Shin, Y.-H. Chung, H. Kim, B. S. Mun, K.-S. Lee, N.-S. Lee, S. J. Yoo, D.-H. Lim, K. Kang, Y.-E. Sung, T. Hyeon, J. Am. Chem. Soc. 2015, 137, 15478–15485.
- 14H. L. Nguyen, L. E. Howard, S. R. Giblin, B. K. Tanner, I. Terry, A. K. Hughes, I. M. Ross, A. Serres, H. Bürckstümmer, J. S. Evans, J. Mater. Chem. 2005, 15, 5136–5143.
- 15C. Wang, D. P. Chen, X. Sang, R. R. Unocic, S. E. Skrabalak, ACS Nano 2016, 10, 6345–6353.
- 16L. M. Magno, W. Sigle, P. A. van Aken, D. Angelescu, C. Stubenrauch, Phys. Chem. Chem. Phys. 2011, 13, 9134–9136.
- 17M. V. Lebedeva, V. Pierron-Bohnes, C. Goyhenex, V. Papaefthimiou, S. Zafeiratos, R. R. Nazmutdinov, V. Da Costa, M. Acosta, L. Zosiak, R. Kozubski, Electrochim. Acta 2013, 108, 605–616.
- 18D. Zhang, F. Wu, M. Peng, X. Wang, D. Xia, G. Guo, J. Am. Chem. Soc. 2015, 137, 6263–6269.
- 19T. T. H. Van, C. J. Pan, J. Rick, W. N. Su, B. J. Hwang, J. Am. Chem. Soc. 2011, 133, 11716–11724.
- 20
- 20aN. Job, A. Théry, R. Pirard, J. Marien, L. Kocon, J.-N. Rouzaud, F. Béguin, J.-P. Pirard, Carbon 2005, 43, 2481–2494;
- 20bH. Tamon, H. Ishizaka, T. Yamamoto, T. Suzuki, Carbon 1999, 37, 2049–2055.
- 21
- 21aZ. Cui, H. Chen, M. Zhao, F. J. DiSalvo, Nano Lett. 2016, 16, 2560–2566;
- 21bZ. Cui, L. Li, A. Manthiram, J. B. Goodenough, J. Am. Chem. Soc. 2015, 137, 7278–7281.
- 22Y. Garsany, O. A. Baturina, K. E. Swider-Lyons, S. S. Kocha, Anal. Chem. 2010, 82, 6321–6328.
- 23
- 23aY. Lu, Y. Jiang, X. Gao, X. Wang, W. Chen, J. Am. Chem. Soc. 2014, 136, 11687–11697;
- 23bG. Fu, Y. Wang, Y. Tang, K. Zhou, J. B. Goodenough, J.-M. Lee, ACS Mater. Lett. 2019, 1, 123–131;
- 23cG. Fu, Y. Liu, Z. Wu, J.-M. Lee, ACS Appl. Nano Mater. 2018, 1, 1904–1911.
- 24
- 24aJ. Zhang, Z. Zhao, Z. Xia, L. Dai, Nat. Nanotechnol. 2015, 10, 444–452;
- 24bY. Huang, Y. Wang, C. Tang, J. Wang, Q. Zhang, Y. Wang, J. Zhang, Adv. Mater. 2019, 31, 1803800.
- 25G. Fu, Z. Liu, J. Zhang, J. Wu, L. Xu, D. Sun, J. Zhang, Y. Tang, P. Chen, Nano Res. 2016, 9, 2110–2122; G. Fu, J. Wang, Y. Chen, Y. Liu, Y. Tang, J. B. Goodenough, J.-M. Lee, Adv. Energy Mater. 2018, 8, 1802263.
- 26
- 26aJ. Greeley, I. Stephens, A. Bondarenko, T. P. Johansson, H. A. Hansen, T. Jaramillo, J. Rossmeisl, I. Chorkendorff, J. K. Nørskov, Nat. Chem. 2009, 1, 552;
- 26bV. Stamenkovic, B. S. Mun, K. J. Mayrhofer, P. N. Ross, N. M. Markovic, J. Rossmeisl, J. Greeley, J. K. Nørskov, Angew. Chem. Int. Ed. 2006, 45, 2897–2901; Angew. Chem. 2006, 118, 2963–2967.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.