Asymmetric Total Syntheses of Di- and Sesquiterpenoids by Catalytic C−C Activation of Cyclopentanones
Dr. Si-Hua Hou
Department of Chemistry, University of Chicago, Chicago, IL, 60637 USA
Search for more papers by this authorAdriana Y. Prichina
Department of Chemistry, University of Chicago, Chicago, IL, 60637 USA
Search for more papers by this authorMengxi Zhang
Department of Chemistry, University of Chicago, Chicago, IL, 60637 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Guangbin Dong
Department of Chemistry, University of Chicago, Chicago, IL, 60637 USA
Search for more papers by this authorDr. Si-Hua Hou
Department of Chemistry, University of Chicago, Chicago, IL, 60637 USA
Search for more papers by this authorAdriana Y. Prichina
Department of Chemistry, University of Chicago, Chicago, IL, 60637 USA
Search for more papers by this authorMengxi Zhang
Department of Chemistry, University of Chicago, Chicago, IL, 60637 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Guangbin Dong
Department of Chemistry, University of Chicago, Chicago, IL, 60637 USA
Search for more papers by this authorAbstract
To show the synthetic utility of the catalytic C−C activation of less strained substrates, described here are the collective and concise syntheses of the natural products (−)-microthecaline A, (−)-leubehanol, (+)-pseudopteroxazole, (+)-seco-pseudopteroxazole, pseudopterosin A–F and G—J aglycones, and (+)-heritonin. The key step in these syntheses involve a Rh-catalyzed C−C/C−H activation cascade of 3-arylcyclopentanones, which provides a rapid and enantioselective route to access the polysubstituted tetrahydronaphthalene cores presented in these natural products. Other important features include 1) the direct C−H amination of the tetralone substrate in the synthesis of (−)-microthecaline A, 2) the use of phosphoric acid to enhance efficiency and regioselectivity for problematic cyclopentanone substrates in the C−C activation reactions, and 3) the direct conversion of serrulatane into amphilectane diterpenes by an allylic cyclodehydrogenation coupling.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201915821-sup-0001-misc_information.pdf8 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1For books and recent reviews, see:
- 1aL. Kürti, B. Czakó, Strategic Applications of Named Reactions in Organic Synthesis, Elsevier, Amsterdam, 2005;
- 1bK. K. Prantz, J. Mulzer, Chem. Rev. 2010, 110, 3741–3766;
- 1cM. A. Drahl, M. Manpadi, L. J. Williams, Angew. Chem. Int. Ed. 2013, 52, 11222–11251; Angew. Chem. 2013, 125, 11430–11461;
- 1d“Molecular Rearrangement”: J. M. Coxon in Organic Reaction Mechanisms, Springer, Heidelberg, 2019, pp. 567–634;
- 1eS. Grecian, J. Aubé in Organic Azides: Syntheses and Applications (Eds.: ), Wiley, Chichester, 2009, pp. 191–237;
10.1002/9780470682517.ch7 Google Scholar
- 1fX. Zhang, Y.-Q. Tu, F.-M. Zhang, Z.-H. Chen, S.-H. Wang, Chem. Soc. Rev. 2017, 46, 2272–2305;
- 1gE. A. Ilardi, C. E. Stivala, A. Zakarian, Chem. Soc. Rev. 2009, 38, 3133–3148.
- 2For selected books and reviews on catalytic C−C bond activation, see:
- 2aM. Murakami, Y. Ito, Top. Organomet. Chem. 1999, 3, 97–130;
- 2b“C−C Bond Activation”: G. Dong, Topics in Current Chemistry, Vol. 346 (Ed.: ), Springer, New York, 2014;
- 2cM. Murakami, Cleavage of carbon-carbon single bonds by transition metals (Ed.: ), Wiley-VCH, New York, 2015;
10.1002/9783527680092 Google Scholar
- 2dM. E. van der Boom, D. Milstein, Chem. Rev. 2003, 103, 1759–1792;
- 2eT. Seiser, T. Saget, D. N. Tran, N. Cramer, Angew. Chem. Int. Ed. 2011, 50, 7740–7752; Angew. Chem. 2011, 123, 7884–7896;
- 2fK. Ruhland, Eur. J. Org. Chem. 2012, 2683–2706;
- 2gF. Chen, T. Wang, N. Jiao, Chem. Rev. 2014, 114, 8613–8661;
- 2hL. Souillart, N. Cramer, Chem. Rev. 2015, 115, 9410–9464;
- 2iD.-S. Kim, W.-J. Park, C.-H. Jun, Chem. Rev. 2017, 117, 8977–9015.
- 3For recent reviews on the activation of three-membered and four-membered rings, see:
- 3aD. J. Mack, J. T. Njardarson, ACS Catal. 2013, 3, 272–286;
- 3bG. Fumagalli, S. Stanton, J. F. Bower, Chem. Rev. 2017, 117, 9404–9432;
- 3cP.-H. Chen, B. A. Billett, T. Tsukamoto, G. Dong, ACS Catal. 2017, 7, 1340–1360.
- 4For recent examples about total synthesis of natural products by C−C activation, see:
- 4aM. Murakami, N. Ishida in Cleavage of carbon-carbon single bonds by transition metals (Ed.: ), Wiley-VCH, New York, 2015, pp. 253–272;
10.1002/9783527680092.ch8 Google Scholar
- 4bY. Wang, Z.-X. Yu, Acc. Chem. Res. 2015, 48, 2288–2296;
- 4cT. Xu, G. Dong, Angew. Chem. Int. Ed. 2014, 53, 10733–10736; Angew. Chem. 2014, 126, 10909–10912;
- 4dL. Deng, M. Chen, G. Dong, J. Am. Chem. Soc. 2018, 140, 9652–9658;
- 4eI. Kerschgens, A. R. Rovira, R. Sarpong, J. Am. Chem. Soc. 2018, 140, 9810–9813.
- 5Y. Nakao, S. Ebata, A. Yada, T. Hiyama, M. Ikawa, S. Ogoshi, J. Am. Chem. Soc. 2008, 130, 12874–12875.
- 6One important exception is the catalytic C−CN bond activation. For reviews, see:
- 6aM. Tobisu, N. Chatani, Chem. Soc. Rev. 2008, 37, 300–307;
- 6b“Catalytic C-CN Bond Activation”: Y. Nakao in C−C Bond Activation (Ed.: ), Springer Berlin Heidelberg, Berlin, 2014, pp. 33–58;
10.1007/128_2013_494 Google Scholar
- 6cQ. Wen, P. Lu, Y. Wang, RSC Adv. 2014, 4, 47806–47826.
- 7
- 7aY. Xia, G. Lu, P. Liu, G. Dong, Nature 2016, 539, 546–550;
- 7bY. Xia, J. Wang, G. Dong, Angew. Chem. Int. Ed. 2017, 56, 2376–2380; Angew. Chem. 2017, 129, 2416–2420.
- 8For selected bioactive natural products or pharmaceuticals contianing α-tetralones, see:
- 8aL. P. Mai, F. Guéritte, V. Dumontet, M. V. Tri, B. Hill, O. Thoison, D. Guénard, T. Sévenet, J. Nat. Prod. 2001, 64, 1162–1168;
- 8bA. A. Hussein, B. Bozzi, M. Correa, T. L. Capson, T. A. Kursar, P. D. Coley, P. N. Solis, M. P. Gupta, J. Nat. Prod. 2003, 66, 858–860;
- 8cS. S. Phifer, D. Lee, E.-K. Seo, N.-C. Kim, T. N. Graf, D. J. Kroll, H. A. Navarro, R. A. Izydore, F. Jiménez, R. Garcia, W. C. Rose, C. R. Fairchild, R. Wild, D. D. Soejarto, N. R. Farnsworth, A. D. Kinghorn, N. H. Oberlies, M. E. Wall, M. C. Wani, J. Nat. Prod. 2007, 70, 954–961;
- 8dS. Yao, C.-P. Tang, C.-Q. Ke, Y. Ye, J. Nat. Prod. 2008, 71, 1242–1246;
- 8eK. P. Devkota, D. Covell, T. Ransom, J. B. McMahon, J. A. Beutler, J. Nat. Prod. 2013, 76, 710–714;
- 8fL. J. Legoabe, A. Petzer, J. P. Petzer, Bioorg. Med. Chem. Lett. 2014, 24, 2758–2763;
- 8gK. T. Amakali, L. J. Legoabe, A. Petzer, J. P. Petzer, Drug Res. 2018, 68, 687–695.
- 9For selected examples about using α-tetralones as intermediates in the syntheses of natural products, see:
- 9aA. Majdalani, H. G. Schmalz, Synlett 1997, 11, 1303–1305;
10.1055/s-1997-1012 Google Scholar
- 9bJ.-G. Allen, S. J. Danishefsky, J. Am. Chem. Soc. 2001, 123, 351–352;
- 9cM. G. Charest, D. R. Siegel, A. G. Myers, J. Am. Chem. Soc. 2005, 127, 8292–8293;
- 9dT. G. Elford, S. Nave, R. P. Sonawane, V. K. Aggarwal, J. Am. Chem. Soc. 2011, 133, 16798–16801;
- 9eD. J. Mans, G. A. Cox, T. V. RajanBabu, J. Am. Chem. Soc. 2011, 133, 5776–5779;
- 9fM. Odagi, K. Furukori, K. Takayama, K. Noguchi, K. Nagasawa, Angew. Chem. Int. Ed. 2017, 56, 6609–6612; Angew. Chem. 2017, 129, 6709–6712;
- 9gS. Tenneti, S. Biswas, G. A. Cox, D. J. Mans, H. J. Lim, T. V. RajanBabu, J. Am. Chem. Soc. 2018, 140, 9868–9881.
- 10For selected examples of α-tetralone synthesis, see:
- 10aR. D. Haworth, J. Chem. Soc. 1932, 1125–1133;
- 10bM. Yokota, D. Fujita, J. Ichikawa, Org. Lett. 2007, 9, 4639–4642;
- 10cM. Odagi, K. Furukori, Y. Yamamoto, M. Sato, K. Iida, M. Yamanaka, K. Nagasawa, J. Am. Chem. Soc. 2015, 137, 1909–1915;
- 10dS. Song, S.-F. Zhu, S. Yang, S. Li, Q.-L. Zhou, Angew. Chem. Int. Ed. 2012, 51, 2708–2711; Angew. Chem. 2012, 124, 2762–2765;
- 10eS. Chang, M. Holmes, J. Mowat, M. Meanwell, R. Britton, Angew. Chem. Int. Ed. 2017, 56, 748–752; Angew. Chem. 2017, 129, 766–770;
- 10fA. Selmani, S. Darses, Org. Lett. 2019, 21, 8122–8126.
- 11For related approaches, see: Refs. [9d,e,g, 10c], and
- 11aS. P. Chavan, M. Thakkar, U. R. Kalkote, Tetrahedron Lett. 2007, 48, 643–646;
- 11bS. Serra, Nat. Prod. Commun. 2013, 8, 863–868.
- 12For selected reviews on asymmetric 1,4-additions, see:
- 12aK. Fagnou, M. Lautens, Chem. Rev. 2003, 103, 169–196;
- 12bT. Hayashi, K. Yamasaki, Chem. Rev. 2003, 103, 2829–2844.
- 13R. Kumar, S. Duffy, V. M. Avery, A. R. Carroll, R. A. Davis, J. Nat. Prod. 2018, 81, 1079–1083.
- 14T. R. Penjarla, M. Kundarapu, S. M. Baquer, A. Bhattacharya, RSC Adv. 2019, 9, 23289–23294.
- 15Y. Takaya, M. Ogasawara, T. Hayashi, Tetrahedron Lett. 1999, 40, 6957–6961.
- 16Y. Otomaru, K. Okamoto, R. Shintani, T. Hayashi, J. Org. Chem. 2005, 70, 2503–2508.
- 17For recent examples, see:
- 17aN. A. Romero, K. A. Margrey, N. E. Tay, D. A. Nicewicz, Science 2015, 349, 1326–1330;
- 17bM. P. Paudyal, A. M. Adebesin, S. R. Burt, D. H. Ess, Z. W. Ma, L. Kurti, J. R. Falck, Science 2016, 353, 1144–1147;
- 17cL. Legnani, G. P. Cerai, B. Morandi, ACS Catal. 2016, 6, 8162–8165;
- 17dJ. Z. Liu, K. Wu, T. Shen, Y. J. Liang, M. C. Zou, Y. C. Zhu, X. W. Li, X. Y. Li, N. Jiao, Chem. Eur. J. 2017, 23, 563–567;
- 17eE. M. D'Amato, J. Borgel, T. Ritter, Chem. Sci. 2019, 10, 2424–2428.
- 18J. M. Marco-Contelles, E. Pérez-Mayoral, A. Samadi, M. D. C. Carreiras, E. Soriano, Chem. Rev. 2009, 109, 2652–2671.
- 19
- 19aM. G. Banwell, D. C. R. Hockless, M. D. McLeod, New J. Chem. 2003, 27, 50–59;
- 19bK. A. Korthals, W. D. Wulff, J. Am. Chem. Soc. 2008, 130, 2898–2899;
- 19cK. Speck, K. Karaghiosoff, T. Magauer, Org. Lett. 2015, 17, 1982–1985.
- 20
- 20aT. J. Heckrodt, J. Mulzer, Natural Products Synthesis II, Targets, Methods, Concepts, Vol. 244 (Ed.: ), Springer, Heidelberg, 2005, pp. 1–41;
- 20bC. G. Newton, M. S. Sherburn, Nat. Prod. Rep. 2015, 32, 865–876;
- 20cY. Gonzalez, D. Torres-Mendoza, G. E. Jones, P. L. Fernandez, Mediators Inflammation 2015, https://doi.org/10.1155/2015/263543;
- 20dE. Sansinenea, A. Ortiz, Curr. Org. Synth. 2016, 13, 556–568;
- 20eL. S. Wang, J. F. Wang, J. Liu, Y. H. Liu, Curr. Med. Chem. 2018, 25, 2304–2328.
- 21For isolation of erogorgiaene, see:
- 21aA. D. Rodríguez, C. Ramírez, J. Nat. Prod. 2001, 64, 100–102; For total synthesis of erogorgiaene, see: ref. 9d, and
- 21bR. R. Cesati, J. de Armas, A. H. Hoveyda, J. Am. Chem. Soc. 2004, 126, 96–101;
- 21cH. M. L. Davies, A. M. Walji, Angew. Chem. Int. Ed. 2005, 44, 1733–1735; Angew. Chem. 2005, 117, 1761–1763;
- 21dM. Harmata, X. C. Hong, Tetrahedron Lett. 2005, 46, 3847–3849;
- 21eJ. S. Yadav, A. K. Basak, P. Srihari, Tetrahedron Lett. 2007, 48, 2841–2843;
- 21fJ. S. Yadav, B. Thirupathaiah, A. A. Al Ghamdi, Eur. J. Org. Chem. 2012, 2077–2077;
- 21gX. Yu, F. Su, C. Liu, H. Yuan, S. Zhao, Z. Zhou, T. Quan, T. Luo, J. Am. Chem. Soc. 2016, 138, 6261–6270.
- 22For isolation of leubethanol, see:
- 22aG. M. Molina-Salinas, V. M. Rivas-Galindo, S. Said-Fernandez, D. C. Lankin, M. A. Munoz, P. Joseph-Nathan, G. F. Pauli, N. Waksman, J. Nat. Prod. 2011, 74, 1842–1850. For total synthesis of leubethanol, see: ref. 21 g, and
- 22bJ. M. H. Lu, M. V. Perkins, H. J. Griesser, Tetrahedron 2013, 69, 6468–6473.
- 23For isolation of seco-pseudopteroxazole and pseudopteroxazole, see:
- 23aA. D. Rodríguez, C. Ramírez, I. I. Rodríguez, E. González, Org. Lett. 1999, 1, 527–530. For total synthesis of seco-pseudopteroxazole and pseudopteroxazole, see: ref. 21 g, and
- 23bJ. P. Davidson, E. J. Corey, J. Am. Chem. Soc. 2003, 125, 13486–13489;
- 23cM. Harmata, X. C. Hong, Org. Lett. 2005, 7, 3581–3583;
- 23dM. Yang, X. Yang, H. Sun, A. Li, Angew. Chem. Int. Ed. 2016, 55, 2851–2855; Angew. Chem. 2016, 128, 2901–2905;
- 23eX. Zhang, X. Fang, M. Xu, Y. Lei, Z. Wu, X. Hu, Angew. Chem. Int. Ed. 2019, 58, 7845–7849; Angew. Chem. 2019, 131, 7927–7931.
- 24For total synthesis of pseudopterosins A–F, G–J, H–K aglycones, and pseudopterosin A see: Refs. [9a,e,g, 21g], and
- 24aC. A. Broka, S. Chan, B. Peterson, J. Org. Chem. 1988, 53, 1584–1586;
- 24bE. J. Corey, P. Carpino, J. Am. Chem. Soc. 1989, 111, 5472–5474;
- 24cE. J. Corey, P. Carpino, Tetrahedron Lett. 1990, 31, 3857–3858;
- 24dK. R. Buszek, D. L. Bixby, Tetrahedron Lett. 1995, 36, 9129–9132;
- 24eE. J. Corey, S. E. Lazerwith, J. Am. Chem. Soc. 1998, 120, 12777–12782;
- 24fS. E. Lazerwith, T. W. Johnson, E. J. Corey, Org. Lett. 2000, 2, 2389–2392;
- 24gR. Chow, P. J. Kocienski, A. Kuhl, J. Y. LeBrazidec, K. Muir, P. Fish, J. Chem. Soc. Perkin Trans. 1 2001, 2344–2355;
- 24hP. J. Kocienski, A. Pontiroli, L. Qun, J. Chem. Soc. Perkin Trans. 1 2001, 2356–2366;
- 24iJ. P. Cooksey, P. J. Kocienski, A. W. Schmidt, T. N. Snaddon, C. A. A. Kilner, Synthesis 2012, 44, 2779–2785;
- 24jC. G. Newton, S. L. Drew, A. L. Lawrence, A. C. Willis, M. N. Paddon-Row, M. S. Sherburn, Nat. Chem. 2015, 7, 82–86.
- 25For reviews about sp3–sp3 cross-coupling, see:
- 25aJ. Choi, G. C. Fu, Science 2017, 356, 152–160;
- 25bD. Leonori, V. K. Aggarwal, Acc. Chem. Res. 2014, 47, 3174–3183;
- 25cE. Geist, A. Kirschning, T. Schmidt, Nat. Prod. Rep. 2014, 31, 441–448. For examples about asymmetric sp3–sp3 cross-coupling methods, see:
- 25dA. Wilsily, F. Tramutola, N. A. Owston, G. C. Fu, J. Am. Chem. Soc. 2012, 134, 5794–5797;
- 25eJ. T. Binder, C. J. Cordier, G. C. Fu, J. Am. Chem. Soc. 2012, 134, 17003–17006;
- 25fC. J. Cordier, R. J. Lundgren, G. C. Fu, J. Am. Chem. Soc. 2013, 135, 10946–10949;
- 25gJ. Choi, G. C. Fu, Science 2017, 356, 152–160;
- 25hX. Mu, Y. Shibata, Y. Makida, G. C. Fu, Angew. Chem. Int. Ed. 2017, 56, 5821–5824; Angew. Chem. 2017, 129, 5915–5918.
- 26
- 26aJ. L. Stymiest, V. Bagutski, R. M. French, V. K. Aggarwal, Nature 2008, 456, 778–782;
- 26bS. Nave, R. P. Sonawane, T. G. Elford, V. K. Aggarwal, J. Am. Chem. Soc. 2010, 132, 17096–17098. For a demonstration of this approach in the synthesis of (+)-erogorgiaene, see: Ref. [9d].
- 27R. Noyori, S. Hashiguchi, Acc. Chem. Res. 1997, 30, 97–102.
- 28For more details, see the Supporting Information.
- 29M. Yoshida, T. Kasai, T. Mizuguchi, K. Namba, Synlett 2014, 25, 1160–1162.
- 30S. Abele, R. Inauen, D. Spielvogel, C. Moessner, J. Org. Chem. 2012, 77, 4765–4773.
- 31S.-Y. Zhang, Q. Li, G. He, W. A. Nack, G. Chen, J. Am. Chem. Soc. 2015, 137, 531–539.
- 32R. Escarcena, J. Perez-Meseguer, E. del Olmo, B. Alanis-Garza, E. Garza-Gonzalez, R. Salazar-Aranda, N. W. de Torres, Molecules 2015, 20, 7245–7262.
- 33T. Hori, K. B. Sharpless, J. Org. Chem. 1978, 43, 1689–1697.
- 34For selected reviews about CDC reactions, see:
- 34aC. J. Li, Acc. Chem. Res. 2009, 42, 335–344;
- 34bC. S. Yeung, V. M. Dong, Chem. Rev. 2011, 111, 1215–1292;
- 34c From C-H to C-C Bonds: Cross-Dehydrogenative-Coupling (Ed.: ), Royal Chemical Society, London, 2015, pp. 1–316;
- 34dM. K. Lakshman, P. K. Vuram, Chem. Sci. 2017, 8, 5845–5888.
- 35For selected reviews and examples in total syntheses about allylic oxidations, see:
- 35aW. R. Gutekunst, P. S. Baran, Chem. Soc. Rev. 2011, 40, 1976–1991;
- 35bA. Nakamura, M. Nakada, Synthesis 2013, 45, 1421–1451;
- 35cV. Weidmann, W. Maison, Synthesis 2013, 45, 2201–2221;
- 35dL. Jorgensen, S. J. McKerrall, C. A. Kuttruff, F. Ungeheuer, J. Felding, P. S. Baran, Science 2013, 341, 878–882;
- 35eS. Kawamura, H. Chu, J. Felding, P. S. Baran, Nature 2016, 532, 90–93;
- 35fC. Yuan, Y. Jin, N. C. Wilde, P. S. Baran, Angew. Chem. Int. Ed. 2016, 55, 8280–8284; Angew. Chem. 2016, 128, 8420–8424.
- 36T. Cochet, V. Bellosta, D. Roche, J. Y. Ortholand, A. Greiner, J. Cossy, Chem. Commun. 2012, 48, 10745–10747.
- 37
- 37aY. H. Zhang, C. J. Li, J. Am. Chem. Soc. 2006, 128, 4242–4243;
- 37bL. Liu, P. E. Floreancig, Org. Lett. 2009, 11, 3152–3155;
- 37cM. Lingamurthy, Y. Jagadeesh, K. Ramakrishna, B. V. Rao, J. Org. Chem. 2016, 81, 1367–1377;
- 37dC. A. Morales-Rivera, P. E. Floreancig, P. Liu, J. Am. Chem. Soc. 2017, 139, 17935–17944.
- 38M. W. B. McCulloch, F. Berrue, B. Haltli, R. G. Kerr, J. Nat. Prod. 2011, 74, 2250–2256.
- 39D. H. Miles, A. M. Ly, V. Chittawong, A. A. Delacruz, E. D. Gomez, J. Nat. Prod. 1989, 52, 896–898.
- 40For total synthesis of heritonin, see: Ref. [11a], and
- 40aH. Irie, R. Matsumoto, M. Nishimura, Y. Zhang, Chem. Pharm. Bull. 1990, 38, 1852–1856;
- 40bP. K. Zubaidha, S. P. Chavan, U. S. Racherla, N. R. Ayyangar, Tetrahedron 1991, 47, 5759–5768;
- 40cS. P. Chavan, P. K. Zubaidha, C. A. Govande, Y. T. S. Rao, J. Chem. Soc. Chem. Commun. 1994, 1101–1102;
- 40dS. P. Chavan, C. A. Govande, Green Chem. 2002, 4, 194–195;
- 40eC. C. Silveira, A. Machado, A. L. Braga, E. J. Lenardao, Tetrahedron Lett. 2004, 45, 4077–4080;
- 40fK. Matsuo, M. Shindo, Org. Lett. 2010, 12, 5346–5349;
- 40gS. P. Chavan, S. Garai, U. R. Kalkote, Tetrahedron 2012, 68, 8509–8514;
- 40hR. U. Batwal, N. P. Argade, Org. Biomol. Chem. 2015, 13, 11331–11340.
- 41Optically pure (R)- or (S)-acid 1 gave almost the same results as rac-acid 1 in this reaction.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.