Zielgerichtete Wirkstoffe für die Krebstherapie: Aktuelle Entwicklungen und Perspektiven
Weihua Chen
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Science and Technology of China, Changchun, 130022 China
Search for more papers by this authorZhen Sun
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Science and Technology of China, Changchun, 130022 China
Search for more papers by this authorCorresponding Author
Prof. Lehui Lu
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Science and Technology of China, Changchun, 130022 China
Search for more papers by this authorWeihua Chen
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Science and Technology of China, Changchun, 130022 China
Search for more papers by this authorZhen Sun
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Science and Technology of China, Changchun, 130022 China
Search for more papers by this authorCorresponding Author
Prof. Lehui Lu
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Science and Technology of China, Changchun, 130022 China
Search for more papers by this authorAbstract
Schwerwiegende Nebenwirkungen und mangelhafte therapeutische Wirksamkeit sind die primären Nachteile der derzeitigen Krebsmedikamente. Diese Problematik kann durch gezielte Ansteuerung, das sogenannte Targeting, minimiert werden, jedoch ist die zielgerichtete Wirksamkeit gegenwärtiger Medikamente noch dürftig und benötigt dringend Verbesserungen. Vor diesem Hintergrund fasst dieser Aufsatz zunächst die aktuellen Targetingstrategien in der Krebstherapie hinsichtlich Krebsgewebe und Organellen zusammen. Anschließend analysieren wir das systematische Targeting mit Krebsmedikamenten und schlussfolgern, dass der typische Verlauf eines zielgerichteten Medikaments, das durch intravenöse Injektion verabreicht wurde, eine CTIO-Kaskade von mindestens vier Schritten durchläuft. Des Weiteren werden zur Sicherstellung einer hohen Gesamt-Targetingeffizienz die in jedem Schritt benötigten Eigenschaften eines zielgerichteten Wirkstoffs weiter untersucht sowie einige Richtlinien für die Strukturoptimierung zur Gewinnung effektiver Targetingmedikamente offeriert. Zum Schluss beleuchten wir die wesentlichen Probleme und potenziellen Herausforderungen für die künftige Erforschung zielgerichteter Krebstherapien. Ziel dieses Aufsatzes ist es, die Entwicklung von Arzneimitteln für die Hochtechnologiemedizin gegen Krebs aktiv voranzutreiben.
Conflict of interest
Die Autoren erklären, dass keine Interessenkonflikte vorliegen.
References
- 1P. Boyle, B. Levin, World Cancer Report 2008, IARC Press, Lyon.
- 2L. A. Torre, F. Bray, R. L. Siegel, J. Ferlay, J. Lortet-Tieulent, A. Jemal, CA. Cancer J. Clin. 2015, 65, 87–108.
- 3C. Nota, F. J. Smits, Y. Woo, I. H. M. Borel Rinkes, I. Q. Molenaar, J. Hagendoorn, Y. Fong, Surg. Oncol. Clin. N. Am. 2019, 28, 89–100.
- 4
- 4aR. Tong, H. H. Chiang, D. S. Kohane, Proc. Natl. Acad. Sci. USA 2013, 110, 19048–19053;
- 4bM. A. Fuertes, J. Castilla, C. Alonso, J. M. Pérez, Curr. Med. Chem. Anti-Cancer Agents 2002, 2, 539–551.
- 5
- 5aR. Stupp, W. P. Mason, M. J. van den Bent, M. Weller, B. Fisher, M. J. B. Taphoorn, K. Belanger, A. A. Brandes, C. Marosi, U. Bodahn, J. Curschmann, R. C. Janzer, S. k. Ludwin, T. Gorlia, A. Allgeier, D. Lacombe, J. G. Cairncross, E. Eisenhauer, R. O. Mirimanoff, N. Engl. J. Med. 2005, 352, 987–996;
- 5bY. Kim, S. Jung, K. Kim, Sci. Rep. 2019, 9, 8527.
- 6K. Cho, X. Wang, S. Nie, Z. G. Chen, D. M. Shin, Clin. Cancer Res. 2008, 14, 1310–1316.
- 7
- 7aG. F. Luo, W. H. Chen, S. Hong, Q. Cheng, W. X. Qiu, X. Z. Zhang, Adv. Funct. Mater. 2017, 27, 1702122–1702134;
- 7bA. Stallivieri, F. Baros, G. Jetpisbayeva, B. Myrzakhmetov, C. Frochot, Curr. Med. Chem. 2015, 22, 3185–3207;
- 7cL. Jiang, H. Bai, L. Liu, F. Lv, X. Ren, S. Wang, Angew. Chem. Int. Ed. 2019, 58, 10660–10665; Angew. Chem. 2019, 131, 10770–10775.
- 8
- 8aO. Blum, N. T. Shaked, Light: Sci. Appl. 2015, 4, e322;
- 8bX. Bao, Y. Yuan, J. Chen, B. Zhang, D. Li, D. Zhou, P. Jing, G. Xu, Y. Wang, K. Hola, D. Shen, C. Wu, L. Song, C. Liu, R. Zboril, S. Qu, Light: Sci. Appl. 2018, 7, 91–101;
- 8cD. Li, D. Han, S. N. Qu, L. Liu, P. T. Jing, D. Zhou, W. Y. Ji, X. Y. Wang, T. F. Zhang, D. Z. Shen, Light: Sci. Appl. 2016, 5, e16120-16127;
- 8dL. Wang, N. J. Long, L. Li, Y. Lu, M. Li, J. Cao, Y. Zhang, Q. Zhang, S. Xu, Z. Yang, C. Mao, M. Peng, Light: Sci. Appl. 2018, 7, 1–13.
- 9
- 9aT. B. Casale, J. R. Stokes, J. Allergy Clin. Immunol. 2014, 133, 612–619;
- 9bE. Alvarez-Cuesta, J. Bousquet, G. W. Canonica, S. R. Durham, H.-J. Malling, E. Valovirta, Allergy 2006, 61, 1–20.
- 10
- 10aD. P. Wolf, P. A. Mitalipov, S. M. Mitalipov, Nat. Med. 2019, 25, 890–897;
- 10bR. Shahbazi, G. Sghia-Hughes, J. L. Reid, S. Kubek, K. G. Haworth, O. Humbert, H. P. Kiem, J. E. Adair, Nat. Mater. 2019, 18, 1124;
- 10cS. Iyer, S. Suresh, D. Guo, K. Daman, J. C. J. Chen, P. Liu, M. Zieger, K. Luk, B. P. Roscoe, C. Mueller, O. D. King, C. P. Emerson, Jr., S. A. Wolfe, Nature 2019, 568, 561–565;
- 10dY. Wang, S. Li, P. Zhang, H. Bai, L. Feng, F. Lv, L. Liu, S. Wang, Adv. Mater. 2018, 30, 1705418.
- 11H. Mizutani, S. Tada-Oikawa, Y. Hiraku, M. Kojima, S. Kawanishi, Life Sci. 2005, 76, 1439–1453.
- 12W. Chen, J. Liu, Y. Wang, C. Jiang, B. Yu, Z. Sun, L. Lu, Angew. Chem. Int. Ed. 2019, 58, 6290–6294; Angew. Chem. 2019, 131, 6356–6360.
- 13T. A. Baudino, Curr. Drug Discovery Technol. 2015, 12, 3–20.
- 14
- 14aD. Adams, A. Gonzalez-Duarte, W. D. O'Riordan, C. C. Yang, M. Ueda, A. V. Kristen, I. Tournev, H. H. Schmidt, T. Coelho, J. L. Berk, K. P. Lin, G. Vita, S. Attarian, V. Planté-ordeneuve, M. M. Mezei, J. M. Campistol, J. Buades, T. H. Brannagan III, B. J. Kim, J. Oh, Y. Parman, Y. Sekijima, P. N. Hawkins, S. D. Solomon, M. Polydefkis, P. J. Dyck, P. J. Gandhi, S. Goyal, J. Chen, A. L. Strahs, S. V. Nochur, M. T. Sweetser, P. P. Garg, A. K. Vaishnaw, J. A. Gollob, O. B. Suhr, N. Engl. J. Med. 2018, 379, 11–21;
- 14bA. C. Krauss, X. Gao, L. Li, M. L. Manning, P. Patel, W. Fu, K. G. Janoria, G. Gieser, D. A. Bateman, D. Przepiorka, Y. L. Shen, S. S. Shord, C. M. Sheth, A. Banerjee, J. Liu, K. B. Goldberg, A. T. Farrell, G. M. Blumenthal, R. Pazdur, Clin. Cancer Res. 2019, 25, 2685–2690;
- 14cS. Bonvalot, P. L. Rutkowski, J. Thariat, S. Carrère, A. Ducassou, M. P. Sunyach, P. Agoston, A. Hong, A. Mervoyer, M. Rastrelli, V. Moreno, R. K. Li, B. Tiangco, A. C. Herraez, A. Gronchi, L. Mangel, T. Sy-Ortin, P. Hohenberger, T. de Baère, A. L. Cesne, S. Helfre, E. Saada-Bouzid, A. Borkowska, R. Anghel, A. Co, M. Gebhart, G. Kantor, A. Montero, H. H. Loong, R. Vergés, L. Lapeire, S. Dema, G. Kacso, L. Austen, L. Moureau-Zabotto, V. Servois, E. Wardelmann, P. Terrier, A. J. Lazar, J. V. M. G. Bovée, C. L. Péchoux, Z. Papai, Lancet Oncol. 2019, 20, 1148–1159.
- 15
- 15aS. M. Kim, P. H. Faix, J. E. Schnitzer, J. Controlled Release 2017, 267, 15–30;
- 15bF. M. Kievit, M. Zhang, Adv. Mater. 2011, 23, H217–H247;
- 15cM. M. Gottesman, Annu. Rev. Med. 2002, 53, 615–627.
- 16P. Carmeliet, R. K. Jain, Nature 2000, 407, 249–257.
- 17Y. Matsumura, H. Maeda, Cancer Res. 1986, 46, 6387–6392.
- 18M. Srinivasarao, P. S. Low, Chem. Rev. 2017, 117, 12133–12164.
- 19
- 19aY. Barenholz, J. Controlled Release 2012, 160, 117–134;
- 19bA. Gabizon, H. Shmeeda, Y. Barenholz, Clin. Pharmacokinet. 2003, 42, 419–436.
- 20
- 20aD. D. Von Hoff, R. K. Ramanathan, M. J. Borad, D. A. Laheru, L. S. Smith, T. E. Wood, R. L. Korn, N. Desai, V. Trieu, J. L. Iglesias, H. Zhang, P. Soon-Shiong, T. Shi, N. V. Rajeshkumar, A. Maitra, M. Hidalgo, J. Clin. Oncol. 2011, 29, 4548–4554;
- 20bW. J. Gradishar, Expert Opin. Pharmacother. 2006, 7, 1041–1053.
- 21E. A. Forssen, Adv. Drug Delivery Rev. 1997, 24, 133–150.
- 22Y. H. Choi, H. K. Han, J. Pharm. Invest. 2018, 48, 43–60.
- 23M. L. Adams, A. Lavasanifar, G. S. Kwon, J. Pharm. Sci. 2003, 92, 1343–1355.
- 24E. Rivera, Clin. Breast Cancer 2003, 4, S76–S83.
- 25M. Chen, S. Tang, Z. Guo, X. Wang, S. Mo, X. Huang, G. Liu, N. Zheng, Adv. Mater. 2014, 26, 8210–8216.
- 26Y. Liu, K. Ai, J. Liu, M. Deng, Y. He, L. Lu, Adv. Mater. 2013, 25, 1353–1359.
- 27Y. Li, C. Jiang, D. Zhang, Y. Wang, X. Ren, K. Ai, X. Chen, L. Lu, Acta Biomater. 2017, 47, 124–134.
- 28Y. Chen, K. Ai, J. Liu, X. Ren, C. Jiang, L. Lu, Biomaterials 2016, 77, 198–206.
- 29C. Jiang, Y. Wang, J. Wang, W. Song, L. Lu, Biomaterials 2017, 114, 54–61.
- 30Y. Liu, K. Ai, X. Ji, D. Askhatova, R. Du, L. Lu, J. Shi, J. Am. Chem. Soc. 2017, 139, 856–862.
- 31A. S. Mikhail, C. Allen, J. Controlled Release 2009, 138, 214–223.
- 32S. D. Li, L. Huang, J. Controlled Release 2010, 145, 178–181.
- 33J. S. Lee, M. Ankone, E. Pieters, R. M. Schiffelers, W. E. Hennink, J. Feijen, J. Controlled Release 2011, 155, 282–288.
- 34H. Cabral, Y. Matsumoto, K. Mizuno, Q. Chen, M. Murakami, M. Kimura, Y. Terada, M. R. Kano, K. Miyazono, M. Uesaka, N. Nishiyama, K. Kataoka, Nat. Nanotechnol. 2011, 6, 815–823.
- 35H. Wang, J. Chang, M. Shi, W. Pan, N. Li, B. Tang, Angew. Chem. Int. Ed. 2019, 58, 1057–1061; Angew. Chem. 2019, 131, 1069–1073.
- 36S. Collins, R. S. Surwit, Recent Prog. Horm. Res. 2001, 56, 309–328.
- 37
- 37aN. Parker, M. J. Turk, E. Westrick, J. D. Lewis, P. S. Low, C. P. Leamon, Anal. Biochem. 2005, 338, 284–293;
- 37bN. Nomura, S. Pastorino, P. Jiang, G. Lambert, J. R. Crawford, M. Gymnopoulos, D. Piccioni, T. Juarez, S. C. Pingle, M. Makale, S. Kesari, Cancer Cell Int. 2014, 14, 26–33;
- 37cT. D. Schmittgen, S. Teske, R. L. Vessella, L. D. True, B. A. Zakrajsek, Int. J. Cancer 2003, 107, 323–329.
- 38J. R. Lovett, L. A. Fielding, S. P. Armes, R. Buxton, Adv. Funct. Mater. 2014, 24, 1290–1299.
- 39J. Zhou, Z. Lu, X. Zhu, X. Wang, Y. Liao, Z. Ma, F. Li, Biomaterials 2013, 34, 9584–9592.
- 40J. Du, Z. Gu, L. Yan, Y. Yong, X. Yi, X. Zhang, J. Liu, R. Wu, C. Ge, C. Chen, Y. Zhao, Adv. Mater. 2017, 29, 1701268–1701277.
- 41P. Lei, R. An, P. Zhang, S. Yao, S. Song, L. Dong, X. Xu, K. Du, J. Feng, H. Zhang, Adv. Funct. Mater. 2017, 27, 1702018–1702037.
- 42W. Tao, X. Ji, X. Xu, M. A. Islam, Z. Li, S. Chen, P. E. Saw, H. Zhang, Z. Bharwani, Z. Guo, J. Shi, O. C. Farokhzad, Angew. Chem. Int. Ed. 2017, 56, 11896–11900; Angew. Chem. 2017, 129, 12058–12062.
- 43
- 43aS. Wang, P. S. Low, J. Controlled Release 1998, 53, 39–48;
- 43bS. J. Duthie, Br. Med. Bull. 1999, 55, 578–592.
- 44S. Maiti, P. Paira, Eur. J. Med. Chem. 2018, 145, 206–223.
- 45T. Araki, H. Yashima, K. Shimizu, T. Aomori, T. Hashita, K. Kaira, T. Nakamura, K. Yamamoto, Clin. Med. Insights. Oncol. 2012, 6, 407–421.
- 46G. Giaccone, Future Oncol. 2005, 1, 449–460.
- 47B. J. Druker, Oncologist 2004, 9, 357–360.
- 48R. S. Herbst, J. V. Heymach, M. S. Reilly, A. Onn, A. J. Ryan, Expert Opin. Invest. Drugs 2007, 16, 239–249.
- 49F. Danhier, A. Le Breton, V. Preat, Mol. Pharm. 2012, 9, 2961–2973.
- 50N. Song, L. Zhao, M. Zhu, J. Zhao, Drug Delivery 2019, 26, 363–375.
- 51D. Gupta, C. G. Lis, Nutr. J. 2010, 9, 69–84.
- 52G. I. Harisa, F. K. Alanazi, Saudi Pharm. J. 2014, 22, 504–515.
- 53M. J. Duffy, C. Duggan, Clin. Biochem. 2004, 37, 541–548.
- 54M. Ahmed, R. Behera, G. Chakraborty, S. Jain, V. Kumar, P. Sharma, A. Bulbule, S. Kale, S. Kumar, R. Mishra, R. Raja, S. Saraswati, R. Kaur, G. Soundararajan, D. Kumar, D. Thorat, M. Sanyal, A. Ramdasi, P. Ghosh, G. C. Kundu, Expert Opin. Ther. Targets 2011, 15, 1113–1126.
- 55S. F. Wong, Clin. Ther. 2005, 27, 694.
- 56K. H. Lan, C. H. Lu, D. Yu, Ann. N. Y. Acad. Sci. 2005, 1059, 70–75.
- 57S. D. Zondor, P. J. Medina, Ann. Pharmacother. 2004, 38, 1258–1264.
- 58M. C. Cheung, A. E. Haynes, R. M. Meyer, A. Stevens, K. R. Imrie, Cancer Treat. Rev. 2007, 33, 161–176.
- 59G. C. Tucker, Curr. Oncol. Rep. 2006, 8, 96–103.
- 60M. J. Piccart-Gebhart, Anti-Cancer Drugs 2001, 12, S27–33.
- 61A. P. Herrington-Symes, M. Farys, H. Khalili, S. Brocchini, Adv. Biosci. Biotechnol. 2013, 4, 689–698.
- 62
- 62aA. Younes, N. L. Bartlett, J. P. Leonard, D. A. Kennedy, C. M. Lynch, E. L. Sievers, A. Forero-Torres, N. Engl. J. Med. 2010, 363, 1812–1821;
- 62bA. H. Maurer, P. Elsinga, S. Fanti, B. Nguyen, W. J. Oyen, W. A. Weber, J. Nucl. Med. 2014, 55, 701–704.
- 63K. V. Waller, K. M. Ward, J. D. Mahan, D. K. Wismatt, Clin. Chem. 1989, 35, 755–765.
- 64
- 64aL. Miao, J. M. Newby, C. M. Lin, L. Zhang, F. Xu, W. Y. Kim, M. G. Forest, S. K. Lai, M. I. Milowsky, S. E. Wobker, L. Huang, ACS nano 2016, 10, 9243–9258;
- 64bG. P. Adams, R. Schier, A. M. McCall, H. H. Simmons, E. M. Horak, R. K. Alpaugh, J. D. Marks, L. M. Weiner, Cancer Res. 2001, 61, 4750–4755;
- 64cM. Juweid, R. Neumann, C. Paik, M. J. Perez-Bacete, J. Sato, W. Osdol, J. N. Weinstein, Cancer Res. 1992, 52, 5144–5153;
- 64dK. Fujimori, D. Covell, J. E. Fletcher, J. N. Weinstein, J. Nucl. Med. 1990, 31, 1191–1198.
- 65G. Villaverde, A. Alfranca, Á. Gonzalez-Murillo, G. J. Melen, R. R. Castillo, M. Ramírez, A. Baeza, M. Vallet-Regí, Angew. Chem. Int. Ed. 2019, 58, 3067–3072; Angew. Chem. 2019, 131, 3099–3104.
- 66D. Ni, C. A. Ferreira, T. E. Barnhart, V. Quach, B. Yu, D. Jiang, W. Wei, H. Liu, J. W. Engle, P. Hu, W. Cai, J. Am. Chem. Soc. 2018, 140, 14971–14979.
- 67C. S. Chiang, Y. J. Lin, R. Lee, Y. H. Lai, H. W. Cheng, C. H. Hsieh, W. C. Shyu, S. Y. Chen, Nat. Nanotechnol. 2018, 13, 746–754.
- 68K. J. Widder, A. E. Senyel, G. D. Scarpelli, Proc. Soc. Exp. Biol. Med. 1978, 158, 141–146.
- 69J. Cummings, Exp. Opin. Ther. Patents 1998, 8, 153–171.
- 70R. H. Fang, A. V. Kroll, W. Gao, L. Zhang, Adv. Mater. 2018, 30, 1706759–1706792.
- 71J. Li, X. Zhen, Y. Lyu, Y. Jiang, J. Huang, K. Pu, ACS Nano 2018, 12, 8520–8530.
- 72Y. Zou, Y. Liu, Z. Yang, D. Zhang, Y. Lu, M. Zheng, X. Xue, J. Geng, R. Chung, B. Shi, Adv. Mater. 2018, 30, 1803717–1803722.
- 73Y. F. Zhang, Q. Yin, L. C. Yin, L. Ma, L. Tang, J. J. Cheng, Angew. Chem. Int. Ed. 2013, 52, 6435–6439; Angew. Chem. 2013, 125, 6563–6567.
- 74
- 74aG. Speelmans, W. H. H. M. Sips, R. J. H. Grisel, R. W. H. M. Staffhorst, A. M. J. Fichtinger-Schepman, J. Reedijk, B. de Kruijff, Biochim. Biophys. Acta-Biomembr. 1996, 1283, 60–66;
- 74bG. Speelmans, R. W. H. M. Staffhorst, K. Versluis, J. Reedijk, B. de Kruijff, Biochemistry 1997, 36, 10545–10550.
- 75
- 75aE. R. Jamieson, S. J. Lippard, Chem. Rev. 1999, 99, 2467–2498;
- 75bS. M. Cohen, S. J. Lippard, Prog. Nucleic Acid Res. Mol. Biol. 2001, 67, 93–130.
- 76M. A. van der Aa, E. Mastrobattista, R. S. Oosting, W. E. Hennink, G. A. Koning, D. J. Crommelin, Pharm. Res. 2006, 23, 447–459.
- 77Y. X. Zhu, H. R. Jia, G. Y. Pan, N. W. Ulrich, Z. Chen, F. G. Wu, J. Am. Chem. Soc. 2018, 140, 4062–4070.
- 78P. L. Paine, L. C. Moore, S. B. Horowitz, Nature 1975, 254, 109–114.
- 79N. Panté, M. Kann, Mol. Biol. Cell 2002, 13, 425–434.
- 80L. Bregoli, D. Movia, J. D. Gavigan-Imedio, J. Lysaght, J. Reynolds, A. Prina-Mello, Nanomed. Nanotechnol. Biol. Med. 2016, 12, 81–103.
- 81S. Huo, S. Jin, X. Ma, X. Xue, K. Yang, A. Kumar, P. C. Wang, J. Zhang, Z. Hu, X. Liang, ACS Nano 2014, 8, 5852–5862.
- 82E. Hinde, K. Thammasiraphop, H. T. Duong, J. Yeow, B. Karagoz, C. Boyer, J. J. Gooding, K. Gaus, Nat. Nanotechnol. 2017, 12, 81–89.
- 83C. Foerg, U. Ziegler, J. Fernandez-Carneado, E. Giralt, R. Rennert, A. G. Beck-Sickinger, H. P. Merkle, Biochemistry 2005, 44, 72–81.
- 84N. Nitin, L. LaConte, W. J. Rhee, G. Bao, Ann. Biomed. Eng. 2009, 37, 2018–2027.
- 85L. Pan, Q. He, J. Liu, Y. Chen, M. Ma, L. Zhang, J. Shi, J. Am. Chem. Soc. 2012, 134, 5722–5725.
- 86Z. H. Li, K. Dong, S. Huang, E. Ju, Z. Liu, M. Yin, J. S. Ren, X. G. Qu, Adv. Funct. Mater. 2014, 24, 3612–3620.
- 87
- 87aY. Shen, Z. Zhou, M. Sui, J. Tang, P. Xu, E. A. Van Kirk, W. J. Murdoch, M. Fan, M. Radosz, Nanomedicine 2010, 5, 1205–1217;
- 87bM. Kanamala, W. R. Wilson, M. Yang, B. D. Palmer, Z. Wu, Biomaterials 2016, 85, 152–167;
- 87cP. Xu, E. A. Van Kirk, Y. Zhan, W. J. Murdoch, M. Radosz, Y. Shen, Angew. Chem. Int. Ed. 2007, 46, 4999–5002; Angew. Chem. 2007, 119, 5087–5090.
- 88
- 88aJ. Han, Q. Wang, Z. Zhang, T. Gong, X. Sun, Small 2014, 10, 524–535;
- 88bL. Chen, H. Wang, Y. Zhang, Y. Wang, Q. Hu, J. Ji, Colloids Surf. B 2013, 111, 297–305;
- 88cJ. Xiao, X. Duan, Q. Meng, Q. Yin, Z. Zhang, H. Yu, L. Chen, W. Gu, Y. Li, Acta biomater. 2014, 10, 2674–2683;
- 88dX. B. Xiong, H. Uludag, A. Lavasanifar, Biomaterials 2009, 30, 242–253.
- 89M. A. Cortez, W. T. Godbey, Y. Fang, M. E. Payne, B. J. Cafferty, K. A. Kosakowska, S. M. Grayson, J. Am. Chem. Soc. 2015, 137, 6541–6549.
- 90R. Tang, M. Wang, M. Ray, Y. Jiang, Z. Jiang, Q. Xu, V. M. Rotello, J. Am. Chem. Soc. 2017, 139, 8547–8551.
- 91P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, J. Golab, CA: Cancer J. Clin. 2011, 61, 250–281.
- 92H. H. Szeto, P. W. Schiller, Pharm. Res. 2011, 28, 2669–2679.
- 93V. Reshetnikov, S. Daum, C. Janko, W. Karawacka, R. Tietze, C. Alexiou, S. Paryzhak, T. Dumych, R. Bilyy, P. Tripal, B. Schmid, R. Palmisano, A. Mokhir, Angew. Chem. Int. Ed. 2018, 57, 11943–11946; Angew. Chem. 2018, 130, 12119–12122.
- 94X. Yang, D. Wang, J. Zhu, L. Xue, C. Ou, W. Wang, M. Lu, X. Song, X. Dong, Chem. Sci. 2019, 10, 3779–3785.
- 95F. Wang, Y. Zhang, Z. Liu, Z. Du, L. Zhang, J. Ren, X. Qu, Angew. Chem. Int. Ed. 2019, 58, 6987–6992; Angew. Chem. 2019, 131, 7061–7066.
- 96J. F. Keij, C. Bell-Prince, J. A. Steinkamp, Cytometry. 2000, 39, 203–210.
10.1002/(SICI)1097-0320(20000301)39:3<203::AID-CYTO5>3.0.CO;2-Z CAS PubMed Web of Science® Google Scholar
- 97M. Li, S. Long, Y. Kang, L. Guo, J. Wang, J. Fan, J. Du, X. Peng, J. Am. Chem. Soc. 2018, 140, 15820–15826.
- 98
- 98aH. H. Szeto, AAPS J. 2006, 8, e521-531;
- 98bH. H. Szeto, Ann. N. Y. Acad. Sci. 2008, 1147, 112–121;
- 98cH. H. Szeto, Antioxid. Redox Signaling 2008, 10, 601–619;
- 98dP. W. Schiller, T. M.-D. Nguyen, I. Berezowska, S. Dupuis, G. Weltrowska, N. N. Chung, C. Lemieux, Eur. J. Med. Chem. 2000, 35, 895–901.
- 99
- 99aF. Fan, S. Nie, D. Yang, M. Luo, H. Shi, Y. H. Zhang, Bioconjugate Chem. 2012, 23, 1309–1317;
- 99bZ. Li, Y. Song, Y. Yang, L. Yang, X. Huang, J. Han, S. Han, Chem. Sci. 2012, 3, 2941–2948;
- 99cX. Zhang, C. Wang, Z. Han, Y. Xiao, ACS Appl. Mater. Interfaces 2014, 6, 21669–21676.
- 100C. S. Abeywickrama, K. J. Wijesinghe, R. V. Stahelin, Y. Pang, Chem. Commun. 2019, 55, 3469–3472.
- 101W. Zhang, F. Zhou, Z. Wang, Z. Zhao, A. Qin, B. Z. Tang, Chem. Asian J. 2019, 14, 1662–1666.
- 102Z. Liu, J. J. Li, D. Kong, M. Tian, Y. Zhao, Z. Xu, W. Gao, Y. Zhou, Eur. J. Inorg. Chem. 2019, 287–294.
- 103G. K. Park, J. H. Lee, A. Levitz, G. El Fakhri, N. S. Hwang, M. Henary, H. S. Choi, Adv. Mater. 2019, 31, 1806216–1806222.
- 104L. He, Z. Y. Pan, W. W. Qin, Y. Li, C. P. Tan, Z. W. Mao, Dalton Trans. 2019, 48, 4398–4404.
- 105S. Griesbeck, M. Ferger, C. Czernetzi, C. Wang, R. Bertermann, A. Friedrich, M. Haehnel, D. Sieh, M. Taki, S. Yamaguchi, T. B. Marder, Chem. Eur. J. 2019, 25, 7679–7688.
- 106A. El-Sayed, H. Harashima, Mol. Ther. 2013, 21, 1118–1130.
- 107X. Chen, X. Zhang, L. Y. Xia, H. Y. Wang, Z. Chen, F. G. Wu, Nano Lett. 2018, 18, 1159–1167.
- 108P. Peng, Y. Du, J. Zheng, H. Wang, T. Li, Angew. Chem. Int. Ed. 2019, 58, 1648–1653; Angew. Chem. 2019, 131, 1662–1667.
- 109W. Sun, X. Zhang, H. R. Jia, Y. X. Zhu, Y. Guo, G. Gao, Y. H. Li, F. G. Wu, Small 2019, 15, 1804575–1804587.
- 110
- 110aH. Xiao, P. Li, X. Hu, X. Shi, W. Zhang, B. Tang, Chem. Sci. 2016, 7, 6153–6159;
- 110bS. Xu, H. W. Liu, X. X. Hu, S. Y. Huan, J. Zhang, Y. C. Liu, L. Yuan, F. L. Qu, X. B. Zhang, W. Tan, Anal. Chem. 2017, 89, 7641–7648.
- 111J. T. Hou, H. S. Kim, C. Duan, M. S. Ji, S. Wang, L. Zeng, W. X. Ren, J. S. Kim, Chem. Commun. 2019, 55, 2533–2536.
- 112A. R. Sekhar, B. Mallik, V. Kumar, J. Sankar, Org. Biomol. Chem. 2019, 17, 3732–3736.
- 113D. Kand, L. Pizarro, I. Angel, A. Avni, D. Friedmann-Morvinski, R. Weinstain, Angew. Chem. Int. Ed. 2019, 58, 4659–4663; Angew. Chem. 2019, 131, 4707–4711.
- 114F. F. Meng, Y. Liu, J. Niu, W. Y. Lin, RSC Adv. 2017, 7, 16087–16091.
- 115Q. Sun, Z. Zhou, N. Qiu, Y. Shen, Adv. Mater. 2017, 29, 1606628–1606645.
- 116F. Yuan, M. Leunig, S. K. Huang, D. A. Berk, D. Papahadjopoulos, R. K. Jam, Cancer Res. 1994, 54, 3352–3356.
- 117
- 117aM. Ferrari, Nat. Rev. Cancer 2005, 5, 161–171;
- 117bX. Wang, L. Yang, Z. G. Chen, D. M. Shin, CA Cancer J. Clin. 2008, 58, 97–110.
- 118
- 118aS. Wilhelm, A. J. Tavares, Q. Dai, S. Ohta, J. Audet, H. F. Dvorak, W. C. W. Chan, Nat. Rev. Mater. 2016, 1, 16014–16025;
- 118bQ. Dai, S. Wilhelm, D. Ding, A. M. Syed, S. Sindhwani, Y. Zhang, Y. Y. Chen, P. MacMillan, W. C. W. Chan, ACS nano 2018, 12, 8423–8435.
- 119S. D. Li, L. Huang, Mol. Pharm. 2008, 5, 496–504.
- 120J. Choi, K. Credit, K. Henderson, R. Deverkadra, Z. He, H. Wiig, H. Vanpelt, M. F. Flessner, Clin. Cancer Res. 2006, 12, 1906–1912.
- 121
- 121aY. Boucher, L. T. Baxter, R. K. Jain, Cancer Res. 1990, 50, 4478–4484;
- 121bC. H. Heldin, K. Rubin, K. Pietras, A. Ostman, Nat. Rev. Cancer 2004, 4, 806–813.
- 122M. Michael, M. M. Doherty, J. Clin. Oncol. 2005, 23, 205–229.
- 123
- 123aM. M. Gottesman, Annu. Rev. Med. 2002, 53, 615–627;
- 123bE. V. Batrakova, A. V. Kabanov, J. Controlled Release 2008, 130, 98–106.
- 124J. S. Zhang, F. Liu, L. Huang, Adv. Drug Delivery Rev. 2005, 57, 689–698.
- 125T. S. Levchenko, R. Rammohan, A. N. Lukyanov, K. R. Whiteman, V. P. Torchilin, Int. J. Pharm. 2002, 240, 95–102.
- 126J. Z. Du, X. J. Du, C. Q. Mao, J. Wang, J. Am. Chem. Soc. 2011, 133, 17560–17563.
- 127M. Sui, W. Liu, Y. Shen, J. Controlled Release 2011, 155, 227–236.
- 128X. Han, J. Liu, M. Liu, C. Xie, C. Zhan, B. Gu, Y. Liu, L. Feng, W. Lu, Int. J. Pharm. 2009, 372, 125–131.
- 129E. S. Lee, K. Na, Y. H. Bae, Nano Lett. 2005, 5, 325–329.
- 130E. S. Lee, Z. Gao, D. Kim, K. Park, I. C. Kwon, Y. H. Bae, J. Controlled Release 2008, 129, 228–236.
- 131
- 131aC. Y. Sun, S. Shen, C. F. Xu, H. J. Li, Y. Liu, Z. T. Cao, X. Z. Yang, J. X. Xia, J. Wang, J. Am. Chem. Soc. 2015, 137, 15217–15224;
- 131bL. Zhu, T. Wang, F. Perche, A. Taigind, V. P. Torchilin, Proc. Natl. Acad. Sci. USA 2013, 110, 17047–17052;
- 131cL. Zhu, F. Perche, T. Wang, V. P. Torchilin, Biomaterials 2014, 35, 4213–4222.
- 132M. M. Yallapu, S. P. Foy, T. K. Jain, V. Labhasetwar, Pharm. Res. 2010, 27, 2283–2295.
- 133S. Jiang, Z. Cao, Adv. Mater. 2010, 22, 920–932.
- 134R. Hoogenboom, Angew. Chem. Int. Ed. 2009, 48, 7978–7994; Angew. Chem. 2009, 121, 8122–8138.
- 135S. Hama, S. Itakura, M. Nakai, K. Nakayama, S. Morimoto, S. Suzuki, K. Kogure, J. Controlled Release 2015, 206, 67–74.
- 136R. Savic, L. Luo, A. Eisenberg, D. Maysinger, Science 2003, 300, 615–618.
- 137J. Chen, J. Ding, C. Xiao, X. Zhuang, X. Chen, Biomater. Sci. 2015, 3, 988–1001.
- 138
- 138aK. Ulbrich, T. Etrych, P. Chytil, M. Pechar, M. Jelinkova, B. Rihova, Int. J. Pharm. 2004, 277, 63–72;
- 138bQ. Feng, R. Tong, Bioeng. Transl. Med. 2016, 1, 277–296.
- 139S. Takae, K. Miyata, M. Oba, T. Ishii, N. Nishiyama, K. Itaka, Y. Yamasaki, H. Koyama, K. Kataoka, J. Am. Chem. Soc. 2008, 130, 6001–6009.
- 140L. Zhu, P. Kate, V. P. Torchilin, ACS nano 2012, 6, 3491–3498.
- 141P. Xu, E. A. Van Kirk, Y. Zhan, W. J. Murdoch, M. Radosz, Y. Shen, Angew. Chem. Int. Ed. 2007, 46, 4999–5002; Angew. Chem. 2007, 119, 5087–5090.
- 142
- 142aY. Huang, Z. Tang, X. Zhang, H. Yu, H. Sun, X. Pang, X. Chen, Biomacromolecules 2013, 14, 2023–2032;
- 142bS. Lv, W. Song, Z. Tang, M. Li, H. Yu, H. Hong, X. Chen, Mol. Pharm. 2014, 11, 1562–1574.
- 143X. Chena, L. Liua, C. Jiang, Acta Pharm. Sin. B 2016, 6, 261–267.
- 144Y. Zhao, Y. Lu, Y. Hu, J. P. Li, L. Dong, L. N. Lin, S. H. Yu, Small 2010, 6, 2436–2442.
- 145C. Wong, T. Stylianopoulos, J. Cui, J. Martin, V. P. Chauhan, W. Jiang, Z. Popovic, R. K. Jain, M. G. Bawendi, D. Fukumura, Proc. Natl. Acad. Sci. USA 2011, 108, 2426–2431.
- 146Q. Sun, X. Sun, X. Ma, Z. Zhou, E. Jin, B. Zhang, Y. Shen, E. A. Van Kirk, W. J. Murdoch, J. R. Lott, T. P. Lodge, M. Radosz, Y. Zhao, Adv. Mater. 2014, 26, 7615–7621.
- 147R. Tong, H. D. Hemmati, R. Langer, D. S. Kohane, J. Am. Chem. Soc. 2012, 134, 8848–8855.
- 148P. J. Hoopes, A. A. Petryka, B. Gimib, A. J. Giustini, J. B. Weaver, J. Bischof, R. Chamberlaine, M. Garwoode, Proc. SPIE Int. Soc. Opt. Eng. 2012, 8317, 83170R1–83170R9.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.