Enantioselective Total Syntheses of Lyconadins A–E through a Palladium-Catalyzed Heck-Type Reaction
Jiayang Zhang
Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030 China
These authors contributed equally to this work.
Search for more papers by this authorYangtian Yan
Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030 China
These authors contributed equally to this work.
Search for more papers by this authorRong Hu
Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030 China
Search for more papers by this authorTing Li
Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030 China
Search for more papers by this authorDr. Wen-Ju Bai
Department of Chemistry, Stanford University, Stanford, CA, 94305-5080 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Yang Yang
Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030 China
Search for more papers by this authorJiayang Zhang
Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030 China
These authors contributed equally to this work.
Search for more papers by this authorYangtian Yan
Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030 China
These authors contributed equally to this work.
Search for more papers by this authorRong Hu
Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030 China
Search for more papers by this authorTing Li
Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030 China
Search for more papers by this authorDr. Wen-Ju Bai
Department of Chemistry, Stanford University, Stanford, CA, 94305-5080 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Yang Yang
Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030 China
Search for more papers by this authorAbstract
A novel palladium-catalyzed Heck-type reaction of thiocarbamates has been designed to construct bridged seven-membered-ring systems that are otherwise challenging to prepare. Taking advantage of this newly developed method, enantioselective syntheses of lyconadins A–E (1–5), lycopecurine (6), and dehydrolycopecurine (7) have been realized in a divergent fashion. Our synthetic strategy also features an intramolecular cyclization of a N-chloroamine to forge the C6−N bond, a transannular Mannich-type reaction of a cyclic nitrone to stitch the C4 and C13 together, and a cyclocondensation to deliver the (dihydro-)pyridone motif.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201912948-sup-0001-misc_information.pdf8.3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1For reviews, see:
- 1aW. A. Ayer, L. S. Trifonov in The Alkaloids: Chemistry and Pharmacology, Vol. 45 (Eds.: ), Academic Press, New York, 1994, pp. 233–266;
- 1bX. Ma, D. R. Gang, Nat. Prod. Rep. 2004, 21, 752–772;
- 1cJ. Kobayashi, H. Morita in The Alkaloids; Chemistry and Biology, Vol. 61 (Ed.: ), Academic Press, New York, 2005, pp. 1–57;
- 1dY. Hirasawa, J. Kobayashi, H. Morita, Heterocycles 2009, 77, 679–729.
- 2J.-T. Cheng, Z.-J. Zhang, X.-N. Li, L.-Y. Peng, H.-R. Luo, X.-D. Wu, Q.-S. Zhao, Nat. Prod. Bioprospect. 2016, 6, 279–284.
- 3
- 3aX.-L. He, K. C. Garcia, Science 2004, 304, 870–875;
- 3bE. S. Olafsdóttir, E. S. Halldorsdottir, N. M. Pich, S. Omarsdottir, Natural Products (Eds.: ), Springer-Verlag, Berlin Heidelberg, 2013, pp. 1239–1262.
10.1007/978-3-642-22144-6_42 Google Scholar
- 4For isolation, see:
- 4aJ. Kobayashi, Y. Hirasawa, N. Yoshida, H. Morita, J. Org. Chem. 2001, 66, 5901–5904;
- 4bK. Ishiuchi, T. Kubota, T. Hoshino, Y. Obara, N. Nakahata, J. Kobayashi, Bioorg. Med. Chem. 2006, 14, 5995–6000.
- 5For isolation, see: K. Ishiuchi, T. Kubota, H. Ishiyama, S. Hayashi, T. Shibata, J. Kobayashi, Tetrahedron Lett. 2011, 52, 289–292.
- 6For isolation, see: K. Ishiuchi, T. Kubota, H. Ishiyama, S. Hayashi, T. Shibata, K. Mori, Y. Obara, N. Nakahata, J. Kobayashi, Bioorg. Med. Chem. 2011, 19, 749–753.
- 7For isolation, see:
- 7aW. A. Ayer, B. Altenkirk, N. Masaki, S. Valverde-Lopez, Can. J. Chem. 1969, 47, 2449–2455;
- 7bW. A. Ayer, N. Masaki, Can. J. Chem. 1971, 49, 524–527;
- 7cJ. C. Braekman, C. Hootele, W. A. Ayer, Bull. Soc. Chim. Belg. 1971, 80, 83–90.
- 8For isolation, see:
- 8aR. V. Gerard, D. B. MacLean, R. Fagianni, C. J. Lock, Can. J. Chem. 1986, 64, 943–949;
- 8bR. V. Gerard, D. B. MacLean, Phytochemistry 1986, 25, 1143–1150.
- 9For a review, see: M. Saha, R. G. Carter, Synlett 2017, 28, 2212–2229.
- 10For synthetic examples, see:
- 10aA. Bisai, S. P. West, R. Sarpong, J. Am. Chem. Soc. 2008, 130, 7222–7223;
- 10bS. P. West, A. Bisai, A. D. Lim, R. R. Narayan, R. Sarpong, J. Am. Chem. Soc. 2009, 131, 11187–11194;
- 10cD. C. Beshore, A. B. Smith, J. Am. Chem. Soc. 2007, 129, 4148–4149;
- 10dD. C. Beshore, A. B. Smith, J. Am. Chem. Soc. 2008, 130, 13778–13789;
- 10eT. Nishimura, A. K. Unni, S. Yokoshima, T. Fukuyama, J. Am. Chem. Soc. 2011, 133, 418–419;
- 10fT. Nishimura, A. K. Unni, S. Yokoshima, T. Fukuyama, J. Am. Chem. Soc. 2013, 135, 3243–3247;
- 10gX.-Y. Cheng, S. P. Waters, Org. Lett. 2013, 15, 4226–4229;
- 10hB. B. Liau, M. D. Shair, J. Am. Chem. Soc. 2010, 132, 9594–9595;
- 10iA. S. Lee, B. B. Liau, M. D. Shair, J. Am. Chem. Soc. 2014, 136, 13442–13452;
- 10jY. Yang, C. W. Haskins, W.-D. Zhang, P. L. Low, M.-J. Dai, Angew. Chem. Int. Ed. 2014, 53, 3922–3925; Angew. Chem. 2014, 126, 4003–4006;
- 10kY. Yang, M.-J. Dai, Synlett 2014, 25, 2093–2098;
- 10lR. A. Samame, C. M. Owens, S. D. Rychnovsky, Chem. Sci. 2016, 7, 188–190.
- 11For selected examples of divergent total synthesis, see:
- 11aJ. M. Richter, Y. Ishihara, T. Masuda, B. W. Whitefield, T. Llamas, A. Pohjakallio, P. S. Baran, J. Am. Chem. Soc. 2008, 130, 17938–17954;
- 11bJ. Willwacher, N. Kausch-Busies, A. Fürstner, Angew. Chem. Int. Ed. 2012, 51, 12041–12046; Angew. Chem. 2012, 124, 12207–12212;
- 11cJ.-P. Krieger, G. Ricci, D. Lesuisse, C. Meyer, J. Cossy, Angew. Chem. Int. Ed. 2014, 53, 8705–8708; Angew. Chem. 2014, 126, 8849–8852;
- 11dY. Yang, Y. Bai, S.-Y. Sun, M.-J. Dai, Org. Lett. 2014, 16, 6216–6219;
- 11eP.-W. Tan, J. Seayad, D. J. Dixon, Angew. Chem. Int. Ed. 2016, 55, 13436–13440; Angew. Chem. 2016, 128, 13634–13638;
- 11fX.-M. Chen, H.-J. Zhang, X.-K. Yang, H.-Q. Lv, X.-R. Shao, C. Tao, H.-F. Wang, B. Cheng, Y. Li, J.-J. Guo, J. Zhang, H.-B. Zhai, Angew. Chem. Int. Ed. 2018, 57, 947–951; Angew. Chem. 2018, 130, 959–963;
- 11gZ.-H. Huang, J. Huang, Y.-Z. Qu, W.-B. Zhang, J.-X. Gong, Z. Yang, Angew. Chem. Int. Ed. 2018, 57, 8744–8748; Angew. Chem. 2018, 130, 8880–8884;
- 11hC.-X. Zhuo, A. Fürstner, J. Am. Chem. Soc. 2018, 140, 10514–10523;
- 11iP.-L. Wang, Y. Gao, D.-W. Ma, J. Am. Chem. Soc. 2018, 140, 11608–11612.
- 12A. Saito, N. Kogure, M. Kitajima, H. Takayama, Org. Lett. 2019, 21, 7134–7137.
- 13For selected examples of the construction of bridged seven-membered rings:
- 13aJ. I. Halliday, M. Chebib, P. Turner, M. D. McLeod, Org. Lett. 2006, 8, 3399–3401;
- 13bG. Barbe, D. Fiset, A. B. Charette, J. Org. Chem. 2011, 76, 5354–5362;
- 13cC. Chen, J. Hu, J.-H. Su, X.-F. Tong, Tetrahedron Lett. 2014, 55, 3229–3231.
- 14For representative examples of Pd0-catalyzed lactam formation, see:
- 14aY. Yasui, H. Takeda, Y. Takemoto, Chem. Pharm. Bull. 2008, 56, 1567–1574;
- 14bH. Kamisaki, T. Nanjo, C. Tsukano, Y. Takemoto, Chem. Eur. J. 2011, 17, 626–633;
- 14cH. Kamisaki, Y. Yasui, Y. Takemoto, Tetrahedron Lett. 2009, 50, 2589–2592.
- 15
- 15aS.-P. Luo, L.-D. Guo, L.-H. Gao, S. Li, P.-Q. Huang, Chem. Eur. J. 2013, 19, 87–91;
- 15bL.-D. Guo, X.-Z. Huang, S.-P. Luo, W.-S. Cao, Y.-P. Ruan, J.-L. Ye, P.-Q. Huang, Angew. Chem. Int. Ed. 2016, 55, 4064–4068; Angew. Chem. 2016, 128, 4132–4136.
- 16Y. Ochi, S. Yokoshima, T. Fukuyama, Org. Lett. 2016, 18, 1494–1496.
- 17
- 17aA. V. Cheprakov, I. P. Beletskaya, Chem. Rev. 2000, 100, 3009–3066;
- 17bA. E. Sollewijn Gelpke, J. J. N. Veerman, M. S. Goedheijt, P. C. J. Kamer, P. W. N. M. van Leeuwen, H. Hiemstra, Tetrahedron 1999, 55, 6657–6670;
10.1016/S0040-4020(99)00312-9 Google Scholar
- 17cP. R. Brooks, M. G. Vetelino, C. G. Bashore, K. Bianco, A. C. Flick, J. W. Coe, Tetrahedron Lett. 2011, 52, 953–954;
- 17dG. Tasic, V. Maslak, S. Husinec, N. Todorovic, V. Savic, Tetrahedron Lett. 2015, 56, 2529–2532.
- 18
- 18aT. Jeffery, J. Chem. Soc. Chem. Commun. 1984, 19, 1287–1289;
- 18bS. Babu, R. C. Larock, Tetrahedron Lett. 1987, 28, 5291–5294.
- 19
- 19aY. Motoyama, M. Aoki, N. Takaoka, R. Aoto, H. Nagashima, Chem. Commun. 2009, 1574–1576;
- 19bY. Nakayama, Y. Maeda, M. Kotatsu, R. Sekiya, M. Ichiki, T. Sato, N. Chida, Chem. Eur. J. 2016, 22, 3300–3303;
- 19cH.-Y. Shi, I. N. Michaelides, B. Darses, P. Jakubec, Q. N. N. Nguyen, R. S. Paton, D. J. Dixon, J. Am. Chem. Soc. 2017, 139, 17755–17758;
- 19dY. Chen, W.-H. Zhang, L. Ren, J. Li, A. Li, Angew. Chem. Int. Ed. 2018, 57, 952–956; Angew. Chem. 2018, 130, 964–968.
- 20
- 20aP. Merino, T. Tejero, Synlett 2011, 14, 1965–1977;
- 20bC. M. Dombrowski, E. N. Maxwell, C. L. Safran, O. A. Akomah, C. W. Downey, Eur. J. Org. Chem. 2013, 5716–5720;
- 20cQ.-Q. Cheng, J. Yedoyan, H. Arman, M. P. Doyle, J. Am. Chem. Soc. 2016, 138, 44–47;
- 20dV. G. Lisnyak, T. Lynch-Colameta, S. A. Snyder, Angew. Chem. Int. Ed. 2018, 57, 15162–15166; Angew. Chem. 2018, 130, 15382–15386.
- 21B. Bradshaw, C. Luque-Corredera, J. Bonjoch, Org. Lett. 2013, 15, 326–329.
- 22The absolute configuration was determined by X-ray crystallographic analysis. CCDC 1910195 (the synthetic (+)-lyconadin D) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.