An Ultrasound Activated Vesicle of Janus Au-MnO Nanoparticles for Promoted Tumor Penetration and Sono-Chemodynamic Therapy of Orthotopic Liver Cancer
Xiahui Lin
MOE key laboratory for analytical science of food safety and biology Institution, College of Chemistry, Fuzhou University, Fuzhou, 350108 P. R. China
Search for more papers by this authorShuya Liu
College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108 P. R. China
Search for more papers by this authorXuan Zhang
MOE key laboratory for analytical science of food safety and biology Institution, College of Chemistry, Fuzhou University, Fuzhou, 350108 P. R. China
Search for more papers by this authorRong Zhu
MOE key laboratory for analytical science of food safety and biology Institution, College of Chemistry, Fuzhou University, Fuzhou, 350108 P. R. China
Search for more papers by this authorShan Chen
MOE key laboratory for analytical science of food safety and biology Institution, College of Chemistry, Fuzhou University, Fuzhou, 350108 P. R. China
Search for more papers by this authorProf. Xiaoyuan Chen
Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892 USA
Search for more papers by this authorCorresponding Author
Prof. Jibin Song
MOE key laboratory for analytical science of food safety and biology Institution, College of Chemistry, Fuzhou University, Fuzhou, 350108 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Huanghao Yang
MOE key laboratory for analytical science of food safety and biology Institution, College of Chemistry, Fuzhou University, Fuzhou, 350108 P. R. China
Search for more papers by this authorXiahui Lin
MOE key laboratory for analytical science of food safety and biology Institution, College of Chemistry, Fuzhou University, Fuzhou, 350108 P. R. China
Search for more papers by this authorShuya Liu
College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108 P. R. China
Search for more papers by this authorXuan Zhang
MOE key laboratory for analytical science of food safety and biology Institution, College of Chemistry, Fuzhou University, Fuzhou, 350108 P. R. China
Search for more papers by this authorRong Zhu
MOE key laboratory for analytical science of food safety and biology Institution, College of Chemistry, Fuzhou University, Fuzhou, 350108 P. R. China
Search for more papers by this authorShan Chen
MOE key laboratory for analytical science of food safety and biology Institution, College of Chemistry, Fuzhou University, Fuzhou, 350108 P. R. China
Search for more papers by this authorProf. Xiaoyuan Chen
Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892 USA
Search for more papers by this authorCorresponding Author
Prof. Jibin Song
MOE key laboratory for analytical science of food safety and biology Institution, College of Chemistry, Fuzhou University, Fuzhou, 350108 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Huanghao Yang
MOE key laboratory for analytical science of food safety and biology Institution, College of Chemistry, Fuzhou University, Fuzhou, 350108 P. R. China
Search for more papers by this authorAbstract
Sonodynamic therapy (SDT) has the advantages of high penetration, non-invasiveness, and controllability, and it is suitable for deep-seated tumors. However, there is still a lack of effective sonosensitizers with high sensitivity, safety, and penetration. Now, ultrasound (US) and glutathione (GSH) dual responsive vesicles of Janus Au-MnO nanoparticles (JNPs) were coated with PEG and a ROS-sensitive polymer. Upon US irradiation, the vesicles were disassembled into small Janus Au-MnO nanoparticles (NPs) with promoted penetration ability. Subsequently, GSH-triggered MnO degradation simultaneously released smaller Au NPs as numerous cavitation nucleation sites and Mn2+ for chemodynamic therapy (CDT), resulting in enhanced reactive oxygen species (ROS) generation. This also allowed dual-modality photoacoustic imaging in the second near-infrared (NIR) window and T1-MR imaging due to the released Mn2+, and inhibited orthotopic liver tumor growth via synergistic SDT/CDT.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201912768-sup-0001-misc_information.pdf2.6 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aB. Cox, P. Beard, Nature 2015, 527, 451;
- 1bM. Aujla, Nat. Rev. Clin. Oncol. 2009, 6, 497;
- 1cG. J. Lu, A. Farhadi, J. O. Szablowski, A. Lee-Gosselin, S. R. Barnes, A. Lakshmanan, R. W. Bourdeau, M. G. Shapiro, Nat. Mater. 2018, 17, 456–463;
- 1dR. Pandit, G. Leinenga, J. Gotz, Theranostics 2019, 9, 3754–3767.
- 2
- 2aA. Y. Rwei, J. L. Paris, B. Wang, W. Wang, C. D. Axon, M. Vallet-Regi, R. Langer, D. S. Kohane, Nat. Biomed. Eng. 2017, 1, 644–653;
- 2bY. Cao, Y. Chen, T. Yu, Y. Guo, F. Liu, Y. Yao, P. Li, D. Wang, Z. Wang, Y. Chen, H. Ran, Theranostics 2018, 8, 1327–1339;
- 2cY. You, X. Liang, T. Yin, M. Chen, C. Qiu, C. Gao, X. Wang, Y. Mao, E. Qu, Z. Dai, R. Zheng, Theranostics 2018, 8, 1665–1677.
- 3
- 3aX. Qian, Y. Zheng, Y. Chen, Adv. Mater. 2016, 28, 8097–8129;
- 3bX. Lin, J. Song, X. Chen, H. Yang, Angew. Chem. Int. Ed. 2019, https://doi.org/10.1002/anie.201906823; Angew. Chem. 2019, https://doi.org/10.1002/ange.201906823;
- 3cJ. Zhu, C. Chu, D. Li, X. Pang, H. Zheng, J. Wang, Y. Shi, Y. Zhang, Y. Cheng, E. Ren, J. Cheng, X. Chen, G. Liu, Adv. Funct. Mater. 2019, 29, e1904056;
- 3dX. Pang, X. Liu, Y. Cheng, C. Zhang, E. Ren, C. Liu, Y. Zhang, J. Zhu, X. Chen, G. Liu, Adv. Mater. 2019, e 19025301;
- 3eH. Wang, Y. Yang, X. Sun, F. Tian, S. Guo, W. Wang, Z. Tian, H. Jin, Z. Zhang, Y. Tian, Theranostics 2018, 8, 4969–4984.
- 4
- 4aA. Sazgarnia, A. Shanei, A. R. Taheri, N. T. Meibodi, H. Eshghi, N. Attaran, M. M. Shanei, J. Ultrasound Med. 2013, 32, 475–483;
- 4bJ. Beik, M. B. Shiran, Z. Abed, I. Shiri, A. Ghadimi-Daresajini, F. Farkhondeh, H. Ghaznavi, A. Shakeri-Zadeh, Med. Phys. 2018, 45, 4306–4314.
- 5
- 5aT. Tuziuti, K. Yasui, M. Sivakumar, Y. Iida, N. Miyoshi, J. Phys. Chem. A 2005, 109, 4869–4872;
- 5bX. Pan, H. Wang, S. Wang, X. Sun, L. Wang, W. Wang, H. Shen, H. Liu, Sci. China Life Sci. 2018, 61, 415–426.
- 6
- 6aL. Zhang, H. Yi, J. Song, J. Huang, K. Yang, B. Tan, D. Wang, N. Yang, Z. Wang, X. Li, ACS Appl. Mater. Interfaces 2019, 11, 9355–9366;
- 6bM. Chen, X. Liang, C. Gao, R. Zhao, N. Zhang, S. Wang, W. Chen, B. Zhao, J. Wang, Z. Dai, ACS Nano 2018, 12, 7312–7326;
- 6cK. Hachimine, H. Shibaguchi, M. Kuroki, H. Yamada, T. Kinugasa, Y. Nakae, R. Asano, I. Sakata, Y. Yamashita, T. Shirakusa, Cancer Sci. 2007, 98, 916–920;
- 6dA. Ma, H. Chen, Y. Cui, Z. Luo, R. Liang, Z. Wu, Z. Chen, T. Yin, J. Ni, M. Zheng, L. Cai, Small 2019, 15, 1804028.
- 7
- 7aX. Pan, L. Bai, H. Wang, Q. Wu, H. Wang, S. Liu, B. Xu, X. Shi, H. Liu, Adv. Mater. 2018, 30, 1800180;
- 7bY. Liu, L. Bai, K. Guo, Y. Jia, K. Zhang, Q. Liu, P. Wang, X. Wang, Theranostics 2019, 9, 5261–5281.
- 8Y. Jiang, P. K. Upputuri, C. Xie, Z. Zeng, A. Sharma, X. Zhen, J. Li, J. Huang, M. Pramanik, K. Pu, Adv. Mater. 2019, 31, 1808166.
- 9
- 9aC. Wang, S. Chen, Y. Wang, X. Liu, F. Hu, J. Sun, H. Yuan, Adv. Mater. 2018, 30, 1706407;
- 9bG. Yang, S. Z. F. Phua, W. Q. Lim, R. Zhang, L. Feng, G. Liu, H. Wu, A. K. Bindra, D. Jana, Z. Liu, Y. Zhao, Adv. Mater. 2019, 31, 1901513;
- 9cP. Zhang, J. Wang, H. Chen, L. Zhao, B. Chen, C. Chu, H. Liu, Z. Qin, J. Liu, Y. Tan, X. Chen, G. Liu, J. Am. Chem. Soc. 2018, 140, 14980–14989;
- 9dJ. Huang, F. Liu, X. Han, L. Zhang, Z. Hu, Q. Jiang, Z. Wang, H. Ran, D. Wang, P. Li, Theranostics 2018, 8, 6178–6194.
- 10
- 10aI. Schick, S. Lorenz, D. Gehrig, A. M. Schilmann, H. Bauer, M. Panthofer, K. Fischer, D. Strand, F. Laquai, W. Tremel, J. Am. Chem. Soc. 2014, 136, 2473–2483;
- 10bG. Yang, L. Xu, Y. Chao, J. Xu, X. Sun, Y. Wu, R. Peng, Z. Liu, Nat. Commun. 2017, 8, 902;
- 10cL. S. Lin, J. Song, L. Song, K. Ke, Y. Liu, Z. Zhou, Z. Shen, J. Li, Z. Yang, W. Tang, G. Niu, H. H. Yang, X. Chen, Angew. Chem. Int. Ed. 2018, 57, 4902–4906; Angew. Chem. 2018, 130, 4996–5000.
- 11Y. Liu, W. Zhen, Y. Wang, J. Liu, L. Jin, T. Zhang, S. Zhang, Y. Zhao, S. Song, C. Li, J. Zhu, Y. Yang, H. Zhang, Angew. Chem. Int. Ed. 2019, 58, 2407–2412; Angew. Chem. 2019, 131, 2429–2434.
- 12
- 12aJ. Shao, M. Abdelghani, G. Shen, S. Cao, D. S. Williams, J. C. M. van Hest, ACS Nano 2018, 12, 4877–4885;
- 12bK. Cheng, M. Sano, C. H. Jenkins, G. Zhang, D. Vernekohl, W. Zhao, C. Wei, Y. Zhang, Z. Zhang, Y. Liu, Z. Cheng, L. Xing, ACS Nano 2018, 12, 4946–4958;
- 12cJ. Song, B. Wu, Z. Zhou, G. Zhu, Y. Liu, Z. Yang, L. Lin, G. Yu, F. Zhang, G. Zhang, H. Duan, G. D. Stucky, X. Chen, Angew. Chem. Int. Ed. 2017, 56, 8110–8114; Angew. Chem. 2017, 129, 8222–8226.
- 13
- 13aF. H. Liu, Y. Cong, G. B. Qi, L. Ji, Z. Y. Qiao, H. Wang, Nano Lett. 2018, 18, 6577–6584;
- 13bT. Liu, L. Tong, N. Lv, X. Ge, Q. Fu, S. Gao, Q. Ma, J. Song, Adv. Funct. Mater. 2019, 29, 1806429;
- 13cJ. Song, L. Lin, Z. Yang, R. Zhu, Z. Zhou, Z. W. Li, F. Wang, J. Chen, H. Yang, X. Chen, J. Am. Chem. Soc. 2019, 141, 8158–8170.
- 14J. Lu, J. Sun, F. Li, J. Wang, J. Liu, D. Kim, C. Fan, T. Hyeon, D. Ling, J. Am. Chem. Soc. 2018, 140, 10071–10074.
- 15S. Li, L. Zhang, X. Chen, T. Wang, Y. Zhao, L. Li, C. Wang, ACS Appl. Mater. Interfaces 2018, 10, 24137–24148.
- 16D. S. Wilson, G. Dalmasso, L. Wang, S. V. Sitaraman, D. Merlin, N. Murthy, Nat. Mater. 2010, 9, 923–928.
- 17X. Lin, Y. Qiu, L. Song, S. Chen, X. Chen, G. Huang, J. Song, X. Chen, H. Yang, Nanoscale Horiz. 2019, 4, 747–756.
- 18
- 18aF. Gong, L. Cheng, N. Yang, O. Betzer, L. Feng, Q. Zhou, Y. Li, R. Chen, R. Popovtzer, Z. Liu, Adv. Mater. 2019, 31, 1900730;
- 18bL. Chan, P. Gao, W. Zhou, C. Mei, Y. Huang, X. F. Yu, P. K. Chu, T. Chen, ACS Nano 2018, 12, 12401–12415.
- 19
- 19aC. Liu, D. Wang, S. Zhang, Y. Cheng, F. Yang, Y. Xing, T. Xu, H. Dong, X. Zhang, ACS Nano 2019, 13, 4267–4277;
- 19bZ. Tang, Y. Liu, M. He, W. Bu, Angew. Chem. Int. Ed. 2019, 58, 946–956; Angew. Chem. 2019, 131, 958–968.
- 20S. Stapleton, M. Dunne, M. Milosevic, C. W. Tran, M. J. Gold, A. Vedadi, T. D. McKee, P. S. Ohashi, C. Allen, D. A. Jaffray, ACS Nano 2018, 12, 7583–7600.
- 21
- 21aV. G. Deepagan, H. Ko, S. Kwon, N. V. Rao, S. K. Kim, W. Um, S. Lee, J. Min, J. Lee, K. Y. Choi, S. Shin, M. Suh, J. H. Park, Nano Lett. 2018, 18, 2637–2644;
- 21bH. Ding, Y. Cai, L. Gao, M. Liang, B. Miao, H. Wu, Y. Liu, N. Xie, A. Tang, K. Fan, X. Yan, G. Nie, Nano Lett. 2019, 19, 203–209.
- 22
- 22aB. Guo, Z. Sheng, D. Hu, C. Liu, H. Zheng, B. Liu, Adv. Mater. 2018, 30, 1802591;
- 22bC. Yin, G. Wen, C. Liu, B. Yang, S. Lin, J. Huang, P. Zhao, S. H. D. Wong, K. Zhang, X. Chen, G. Li, X. Jiang, J. Huang, K. Pu, L. Wang, L. Bian, ACS Nano 2018, 12, 12201–12211;
- 22cJ. Li, X. Zhen, Y. Lyu, Y. Jiang, J. Huang, K. Pu, ACS Nano 2018, 12, 8520–8530.
- 23Z. Wang, X. Zhen, P. K. Upputuri, Y. Jiang, J. Lau, M. Pramanik, K. Pu, B. Xing, ACS Nano 2019, 13, 5816–5825.
- 24T. C. Chou, Pharmacol. Rev. 2006, 58, 621–681.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.