Chiral N-Heterocyclic Carbene Ligands Enable Asymmetric C−H Bond Functionalization
Jompol Thongpaen
LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR—UMR 6226, F-35000 Rennes, France
Search for more papers by this authorRomane Manguin
Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR—UMR 6226, F-35000 Rennes, France
Search for more papers by this authorCorresponding Author
Dr. Olivier Baslé
LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
Search for more papers by this authorJompol Thongpaen
LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR—UMR 6226, F-35000 Rennes, France
Search for more papers by this authorRomane Manguin
Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR—UMR 6226, F-35000 Rennes, France
Search for more papers by this authorCorresponding Author
Dr. Olivier Baslé
LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
Search for more papers by this authorAbstract
The asymmetric functionalization of C−H bond is a particularly valuable approach for the production of enantioenriched chiral organic compounds. Chiral N-heterocyclic carbene (NHC) ligands have become ubiquitous in enantioselective transition-metal catalysis. Conversely, the use of chiral NHC ligands in metal-catalyzed asymmetric C−H bond functionalization is still at an early stage. This minireview highlights all the developments and the new advances in this rapidly evolving research area.
Conflict of interest
The authors declare no conflict of interest.
References
- 1H. B. Kagan, T.-P. Dang, J. Am. Chem. Soc. 1972, 94, 6429–6433.
- 2B. D. Vineyard, W. S. Knowles, M. J. Sabacky, G. L. Bachman, D. J. Weinkauff, J. Am. Chem. Soc. 1977, 99, 5946–5952.
- 3R. Noyori, T. Ohkuma, M. Kitamura, H. Takaya, N. Sayo, H. Kumobayashi, S. Akutagawa, J. Am. Chem. Soc. 1987, 109, 5856–5858.
- 4T. Katsuki, K. B. Sharpless, J. Am. Chem. Soc. 1980, 102, 5974–5976.
- 5
- 5aJ. T. Mohr, M. R. Frout, B. M. Stoltz, Nature 2008, 455, 323–332;
- 5bH. U. Blaser, H.-J. Federsel, Asymmetric Catalysis on Industrial Scale: Challenges, Approaches and Solutions, 2nd ed., Wiley, Hoboken, 2010.
10.1002/9783527630639 Google Scholar
- 6
- 6aA. H. Cherney, N. T. Kadunce, S. E. Reisman, Chem. Rev. 2015, 115, 9587–9652;
- 6bH. Yang, X. Yang, W. Tang, Tetrahedron 2016, 72, 6143–6174.
- 7
- 7aT. G. Saint-Denis, R.-Y. Zhu, G. Chen, Q.-F. Wu, J.-Q. Yu, Science 2018, 359, eaao4798;
- 7bZ. Zhang, P. H. Dixneuf, J.-F. Soulé, Chem. Commun. 2018, 54, 7265–7280;
- 7cC. G. Newton, S.-G. Wang, C. C. Oliveira, N. Cramer, Chem. Rev. 2017, 117, 8908–8976;
- 7dC. Zheng, S.-L. You, RSC Adv. 2014, 4, 6173–6214;
- 7eJ. Wencel-Delord, F. Colobert, Chem. Eur. J. 2013, 19, 14010–14017;
- 7fJ. Yamaguchi, A. D. Yamaguchi, K. Itami, Angew. Chem. Int. Ed. 2012, 51, 8960–9009; Angew. Chem. 2012, 124, 9092–9142.
- 8
- 8aY. Taura, M. Tanaka, K. Funakoshi, K. Sakai, Tetrahedron Lett. 1989, 30, 6349–6352;
- 8bR. K. Thalji, J. A. Ellman, R. G. Bergman, J. Am. Chem. Soc. 2004, 126, 7192–7193;
- 8cM. R. Albicker, N. Cramer, Angew. Chem. Int. Ed. 2009, 48, 9139–9142; Angew. Chem. 2009, 121, 9303–9306.
- 9
- 9aB.-F. Shi, N. Maugel, Y.-H. Zhang, J.-Q. Yu, Angew. Chem. Int. Ed. 2008, 47, 4882–4886; Angew. Chem. 2008, 120, 4960–4964; For a pioneering work, see:
- 9bV. I. Sokolov, L. L. Troitskaya, O. A. Reutov, J. Organomet. Chem. 1979, 182, 537–546.
- 10For selected examples, see:
- 10aB.-F. Shi, Y.-H. Zhang, J. K. Lam, D.-H. Wang, J.-Q. Yu, J. Am. Chem. Soc. 2010, 132, 460–461;
- 10bM. Wasa, K. M. Engle, D. W. Lin, E. J. Yoo, J.-Q. Yu, J. Am. Chem. Soc. 2011, 133, 19598–11960;
- 10cX.-F. Cheng, Y. Li, Y.-M. Su, F. Yin, J.-Y. Wang, J. Sheng, H. U. Vora, X.-S. Wang, J.-Q. Yu, J. Am. Chem. Soc. 2013, 135, 1236–1239;
- 10dL. Chu, X.-C. Wang, C. E. Moore, A. L. Rheingold, J.-Q. Yu, J. Am. Chem. Soc. 2013, 135, 16344–16347;
- 10eD.-W. Gao, Y.-C. Shi, Q. Gu, Z.-L. Zhao, S.-L. You, J. Am. Chem. Soc. 2013, 135, 86–89;
- 10fL. Chu, K.-J. Xiao, J.-Q. Yu, Science 2014, 346, 451–455;
- 10gB. N. Laforteza, K. S. L. Chan, J.-Q. Yu, Angew. Chem. Int. Ed. 2015, 54, 11143–11146; Angew. Chem. 2015, 127, 11295–11298;
- 10hF.-L. Zhang, K. Hong, T.-J. Li, H. Park, J.-Q. Yu, Science 2016, 351, 252–256;
- 10iG. Chen, W. Gong, Z. Zhuang, M. S. Andrä, Y.-Q. Chen, X. Hong, Y.-F. Yang, T. Liu, K. N. Houk, J.-Q. Yu, Science 2016, 353, 1023–1027.
- 11
- 11aB. Ye, N. Cramer, Science 2012, 338, 504–506;
- 11bB. Ye, N. Cramer, J. Am. Chem. Soc. 2013, 135, 636–639.
- 12B. Ye, N. Cramer, Acc. Chem. Res. 2015, 48, 1308–1318.
- 13
- 13aM. Nagamoto, T. Nishimura, ACS Catal. 2017, 7, 833–847;
- 13bG. Yang, W. Zhang, Chem. Soc. Rev. 2018, 47, 1783–1810.
- 14
- 14aV. César, S. Bellemin-Laponnaz, L. H. Gade, Chem. Soc. Rev. 2004, 33, 619–636;
- 14bF. Wanga, L.-j. Liua, W. Wanga, S. Li, M. Shi, Coord. Chem. Rev. 2012, 256, 804–853.
- 15
- 15aM. Iglesias, L. A. Oro, Chem. Soc. Rev. 2018, 47, 2772–2808;
- 15bE. Peris, Chem. Rev. 2018, 118, 9988–10031;
- 15cÁ. Vivancos, C. Segarra, M. Albrecht, Chem. Rev. 2018, 118, 9493–9586;
- 15dG. C. Fortman, S. P. Nolan, Chem. Soc. Rev. 2011, 40, 5151–5169.
- 16
- 16aL. Benhamou, E. Chardon, G. Lavigne, S. Bellemin-Laponnaz, V. Cesar, Chem. Rev. 2011, 111, 2705–2733;
- 16bP. J. Czerwiński, M. Michalak, Synthesis 2019, 51, 1689–1714.
- 17D. Janssen-Müller, C. Schlepphorst, F. Glorius, Chem. Soc. Rev. 2017, 46, 4845–4854.
- 18S. Lee, J. F. Hartwig, J. Org. Chem. 2001, 66, 3402–3415.
- 19T. Arao, K. Kondo, T. Aoyama, Tetrahedron Lett. 2006, 47, 1417–1420.
- 20
- 20aX. Luan, R. Mariz, C. Robert, M. Gatti, S. Blumentritt, A. Linden, R. Dorta, Org. Lett. 2008, 10, 5569–5572;
- 20bX. Luan, L. Wu, E. Drinkel, R. Mariz, M. Gatti, R. Dorta, Org. Lett. 2010, 12, 1912–1915.
- 21
- 21aF. Glorius, G. Altenhohh, R. Goddard, C. Lehmann, Chem. Commun. 2002, 2704–2705;
- 21bS. Würtz, C. Lohre, R. Fröhlich, K. Bergander, F. Glorius, J. Am. Chem. Soc. 2009, 131, 8344–8345.
- 22L. liu, N. Ishida, S. Ashida, M. Murakami, Org. Lett. 2011, 13, 1666–1669.
- 23
- 23aE. P. Kündig, T. M. Seidel, Y.-X. Jia, G. Bernardinelli, Angew. Chem. Int. Ed. 2007, 46, 8484–8487; Angew. Chem. 2007, 119, 8636–8639;
- 23bY.-X. Jia, J. M. Hillgren, E. L. Watson, S. P. Marsden, E. P. Kündig, Chem. Commun. 2008, 4040–4042;
- 23cY.-X. Jia, D. Katayev, G. Bernardinelli, T. M. Seidel, E. P. Kündig, Chem. Eur. J. 2010, 16, 6300–6309;
- 23dD. Katayev, E. P. Kündig, Helv. Chim. Acta 2012, 95, 2287–2295;
- 23eD. Katayev, Y.-X. Jia, A. K. Sharma, D. Banerjee, C. Besnard, R. B. Sunoj, E. P. Kündig, Chem. Eur. J. 2013, 19, 11916–11927.
- 24M. J. Spallek, D. Riedel, F. Rominger, A. S. K. Hashmi, O. Trapp, Organometallics 2012, 31, 1127–1132.
- 25M. Nakanishi, D. Katayev, C. Besnard, E. P. Kündig, Angew. Chem. Int. Ed. 2011, 50, 7438–7441; Angew. Chem. 2011, 123, 7576–7579.
- 26E. Larionov, M. Nakanishi, D. Katayev, C. Besnard, E. P. Kundig, Chem. Sci. 2013, 4, 1995–2005.
- 27For details concerning CMD mechanism see: M. Lafrance, K. Fagnou, J. Am. Chem. Soc. 2006, 128, 16496–16497.
- 28D. Katayev, M. Nakanishi, T. Burgi, E. P. Kündig, Chem. Sci. 2012, 3, 1422–1425.
- 29D. Katayev, E. Larionov, M. Nakanishi, C. Besnard, E. P. Kündig, Chem. Eur. J. 2014, 20, 15021–15030.
- 30N. Martin, C. Pierre, M. Davi, R. Jazzar, O. Baudoin, Chem. Eur. J. 2012, 18, 4480–4484.
- 31R. Melot, M. V. Craveiro, T. Bürgi, O. Baudoin, Org. Lett. 2019, 21, 812–815.
- 32J. H. Kim, S. Grissies, M. Boultadakis-Arapinis, C. Daniliuc, F. Glorius, ACS Catal. 2016, 6, 7652–7656.
- 33
- 33aP. Queval, C. Jahier, M. Rouen, I. Artur, J.-C. Legeay, L. Falivene, L. Toupet, C. Crévisy, L. Cavallo, O. Baslé, M. Mauduit, Angew. Chem. Int. Ed. 2013, 52, 14103–14107; Angew. Chem. 2013, 125, 14353–14357;
- 33bR. Tarrieu, A. Dumas, J. Thongpaen, T. Vives, T. Roisnel, V. Dorcet, C. Crévisy, O. Baslé, M. Mauduit, J. Org. Chem. 2017, 82, 1880–1887.
- 34Y. Cai, J.-W. Zhang, F. Li, J.-M. Liu, S.-L. Shi, ACS Catal. 2019, 9, 1–6.
- 35
- 35aA. Albright, R. E. Gawley, J. Am. Chem. Soc. 2011, 133, 19680–19683;
- 35bA. Albright, D. Eddings, R. Black, C. J. Welch, N. N. Gerasimchuk, R. E. Gawley, J. Org. Chem. 2011, 76, 7341–7351.
- 36Y. Cai, X.-T. Yang, S.-Q. Zhang, F. Li, Y.-Q. Li, L.-X. Ruan, X. Hong, S.-L. Shi, Angew. Chem. Int. Ed. 2018, 57, 1376–1380; Angew. Chem. 2018, 130, 1390–1394.
- 37J. Diesel, A. M. Finogenova, N. Cramer, J. Am. Chem. Soc. 2018, 140, 4489–4493.
- 38P. A. Donets, N. Cramer, Angew. Chem. Int. Ed. 2015, 54, 633–637; Angew. Chem. 2015, 127, 643–647.
- 39
- 39aJ. Guihaumé, S. Halbert, O. Eisenstein, R. N. Perutz, Organometallics 2012, 31, 1300–1314;
- 39bJ. S. Bair, Y. Schramm, A. G. Sergeev, E. Clot, O. Eisenstein, J. F. Hartwig, J. Am. Chem. Soc. 2014, 136, 13098–13101;
- 39cV. Singh, Y. Nakao, S. Sakaki, M. M. Deshmukh, J. Org. Chem. 2017, 82, 289–301;
- 39dA. J. Nett, J. Montgomery, P. M. Zimmerman, ACS Catal. 2017, 7, 7352–7362.
- 40W.-B. Zhang, X.-T. Yang, J.-B. Ma, Z.-M. Su, S.-L. Shi, J. Am. Chem. Soc. 2019, 141, 5628–5634.
- 41J. Diesel, D. Grosheva, S. Kodama, N. Cramer, Angew. Chem. Int. Ed. 2019, 58, 11044–11048; Angew. Chem. 2019, 131, 11160–11164.
- 42
- 42aS.-L. Shi, Y. Cai, X.-T. Yang, F. Li, WO 2019096209;
- 42bD. Shen, Y. Xu, S.-L. Shi, J. Am. Chem. Soc. 2019, 141, 14938–14945.
- 43Y. Cai, X. Ye, S.-L. Shi, Angew. Chem. Int. Ed. 2019, 58, 13433–13437; Angew. Chem. 2019, 131, 13567–13571.
- 44A. Dumas, R. Tarrieu, T. Vives, T. Roisnel, V. Dorcet, O. Baslé, M. Mauduit, ACS Catal. 2018, 8, 3257–3262.
- 45J. S. E. Ahlin, N. Cramer, Org. Lett. 2016, 18, 3242–3245.
- 46W. Liu, L. Ackermann, ACS Catal. 2016, 6, 3743–3752.
- 47J. Loup, D. Zell, J. C. A. Oliveira, H. Keil, D. Stalke, L. Ackermann, Angew. Chem. Int. Ed. 2017, 56, 14197–14201; Angew. Chem. 2017, 129, 14385–14389.
- 48
- 48aJ. Loup, T. Parchomyk, S. lülf, S. Demeshko, F. Mejer, K. Koszinowski, L. Ackermann, Dalton Trans. 2019, 48, 5135–5139;
- 48bD. Zell, M. Bursch, V. Müller, S. Grimme, L. Ackermann, Angew. Chem. Int. Ed. 2017, 56, 10378–10382; Angew. Chem. 2017, 129, 10514–10518.
- 49H. Ohmiya, H. Zhang, S. Shibata, A. Harada, M. Sawamura, Angew. Chem. Int. Ed. 2016, 55, 4777–4780; Angew. Chem. 2016, 128, 4855–4858.
- 50Y. Makida, H. Ohmiya, M. Sawamura, Angew. Chem. Int. Ed. 2012, 51, 4122–4127; Angew. Chem. 2012, 124, 4198–4203.
- 51G. Hilt, ChemCatChem 2015, 7, 1639–1641.
- 52C.-Y. Ho, C.-W. Chan, L. He, Angew. Chem. Int. Ed. 2015, 54, 4512–4516; Angew. Chem. 2015, 127, 4595–4599.
- 53C.-Y. Ho, L. He, Angew. Chem. Int. Ed. 2010, 49, 9182–9186; Angew. Chem. 2010, 122, 9368–9372.
- 54
- 54aJ. Loup, U. Dhawa, F. Pesciaioli, J. Wencel-Delord, L. Ackermann, Angew. Chem. Int. Ed. 2019, 58, 12803–12818; Angew. Chem. 2019, 131, 12934–12949;
- 54bŁ. Wozniak, N. Cramer, Trends Chem. 2019, 1, 471–484.
- 55
- 55aSee references [14b] and [15b];
- 55bJ. Thongpaen, R. Manguin, V. Dorcet, T. Vives, C. Duhayon, M. Mauduit, O. Baslé, Angew. Chem. Int. Ed. 2019, 58, 15244–15248; Angew. Chem. 2019, 131, 15388–15392.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.