An Engineered Superhydrophilic/Superaerophobic Electrocatalyst Composed of the Supported CoMoSx Chalcogel for Overall Water Splitting
Xinyao Shan
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Jian Liu
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
These authors contributed equally to this work.
Search for more papers by this authorHaoran Mu
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
Search for more papers by this authorDr. Yao Xiao
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
Search for more papers by this authorBingbao Mei
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204 China
Search for more papers by this authorDr. Wengang Liu
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
Search for more papers by this authorGang Lin
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
Search for more papers by this authorProf. Zheng Jiang
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204 China
Search for more papers by this authorCorresponding Author
Prof. Liping Wen
CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorProf. Lei Jiang
CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorXinyao Shan
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Jian Liu
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
These authors contributed equally to this work.
Search for more papers by this authorHaoran Mu
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
Search for more papers by this authorDr. Yao Xiao
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
Search for more papers by this authorBingbao Mei
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204 China
Search for more papers by this authorDr. Wengang Liu
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
Search for more papers by this authorGang Lin
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
Search for more papers by this authorProf. Zheng Jiang
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204 China
Search for more papers by this authorCorresponding Author
Prof. Liping Wen
CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorProf. Lei Jiang
CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorAbstract
The development of high-efficiency electrocatalysts for large-scale water splitting is critical but also challenging. In this study, a hierarchical CoMoSx chalcogel was synthesized on a nickel foam (NF) through an in situ metathesis reaction and demonstrated excellent activity and stability in the electrocatalytic hydrogen evolution reaction and oxygen evolution reaction in alkaline media. The high catalytic activity could be ascribed to the abundant active sites/defects in the amorphous framework and promotion of activity through cobalt doping. Furthermore, the superhydrophilicity and superaerophobicity of micro-/nanostructured CoMoSx/NF promoted mass transfer by facilitating access of electrolytes and ensuring fast release of gas bubbles. By employing CoMoSx/NF as bifunctional electrocatalysts, the overall water splitting device delivered a current density of 500 mA cm−2 at a low voltage of 1.89 V and maintained its activity without decay for 100 h.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201911617-sup-0001-misc_information.pdf1.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. R. McKone, N. S. Lewis, H. B. Gray, Chem. Mater. 2014, 26, 407–414.
- 2Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, T. F. Jaramillo, Science 2017, 355, eaad 4998.
- 3T. Reier, M. Oezaslan, P. Strasser, ACS Catal. 2012, 2, 1765–1772.
- 4
- 4aC. C. L. McCrory, S. Jung, I. M. Ferrer, S. M. Chatman, J. C. Peters, T. F. Jaramillo, J. Am. Chem. Soc. 2015, 137, 4347–4357;
- 4bX. Zhao, P. Pachfule, S. Li, T. Langenhahn, M. Ye, C. Schlesiger, S. Praetz, J. Schmidt, A. Thomas, J. Am. Chem. Soc. 2019, 141, 6623–6630.
- 5
- 5aX. Gao, H. Zhang, Q. Li, X. Yu, Z. Hong, X. Zhang, C. Liang, Z. Lin, Angew. Chem. Int. Ed. 2016, 55, 6290–6294; Angew. Chem. 2016, 128, 6398–6402;
- 5bH. Wang, H.-W. Lee, Y. Deng, Z. Lu, P.-C. Hsu, Y. Liu, D. Lin, Y. Cui, Nat. Commun. 2015, 6, 7261;
- 5cY. Jia, L. Zhang, G. Gao, H. Chen, B. Wang, J. Zhou, M. T. Soo, M. Hong, X. Yan, G. Qian, Adv. Mater. 2017, 29, 1700017;
- 5dJ. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R. Dong, S. Liu, X. Zhuang, X. Feng, Angew. Chem. Int. Ed. 2016, 55, 6702–6707; Angew. Chem. 2016, 128, 6814–6819;
- 5eM. Ledendecker, S. Krick Calderón, C. Papp, H. P. Steinrück, M. Antonietti, M. Shalom, Angew. Chem. Int. Ed. 2015, 54, 12361–12365; Angew. Chem. 2015, 127, 12538–12542.
- 6
- 6aY. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, Chem. Soc. Rev. 2015, 44, 2060–2086;
- 6bM. S. Faber, S. Jin, Energy Environ. Sci. 2014, 7, 3519–3542;
- 6cY. Yang, H. Yao, Z. Yu, S. M. Islam, H. He, M. Yuan, Y. Yue, K. Xu, W. Hao, G. Sun, H. Li, S. Ma, P. Zapol, M. G. Kanatzidis, J. Am. Chem. Soc. 2019, 141, 10417–10430;
- 6dF. Yu, H. Zhou, Y. Huang, J. Sun, F. Qin, J. Bao, W. A. Goddard, S. Chen, Z. Ren, Nat. Commun. 2018, 9, 2551.
- 7
- 7aZ. Ji, C. Trickett, X. Pei, O. M. Yaghi, J. Am. Chem. Soc. 2018, 140, 13618–13622;
- 7bY. Luo, L. Tang, U. Khan, Q. Yu, H.-M. Cheng, X. Zou, B. Liu, Nat. Commun. 2019, 10, 269.
- 8
- 8aP. D. Tran, T. V. Tran, M. Orio, S. Torelli, Q. D. Truong, K. Nayuki, Y. Sasaki, S. Y. Chiam, R. Yi, I. Honma, Nat. Mater. 2016, 15, 640–646;
- 8bK. Nikolay, R. Joaquin, B. Nigel, J. Chang-Ming, L. Yi-Sheng, N. Kaiqi, S. Xuhui, G. Jinghua, S. R. Leone, Y. Peidong, J. Am. Chem. Soc. 2015, 137, 7448–7455;
- 8cJ. D. Benck, Z. Chen, L. Y. Kuritzky, A. J. Forman, T. F. Jaramillo, ACS Catal. 2012, 2, 1916–1923.
- 9
- 9aD. Merki, H. Vrubel, L. Rovelli, S. Fierro, X. Hu, Chem. Sci. 2012, 3, 2515–2525;
- 9bJ. Staszak-Jirkovský, C. D. Malliakas, P. P. Lopes, N. Danilovic, S. S. Kota, K.-C. Chang, B. Genorio, D. Strmcnik, V. R. Stamenkovic, M. G. Kanatzidis, N. M. Markovic, Nat. Mater. 2016, 15, 197–203.
- 10
- 10aP. Cai, J. Huang, J. Chen, Z. Wen, Angew. Chem. Int. Ed. 2017, 56, 4858–4861; Angew. Chem. 2017, 129, 4936–4939;
- 10bW. Zhao, C. Zhang, F. Geng, S. Zhuo, B. Zhang, ACS Nano 2014, 8, 10909–10919.
- 11X. Sheng, Z. Liu, R. Zeng, L. Chen, X. Feng, L. Jiang, J. Am. Chem. Soc. 2017, 139, 12402–12405.
- 12W. Xu, Z. Lu, X. Sun, L. Jiang, X. Duan, Acc. Chem. Res. 2018, 51, 1590–1598.
- 13
- 13aH. Li, S. Chen, Y. Zhang, Q. Zhang, X. Jia, Q. Zhang, L. Gu, X. Sun, L. Song, X. Wang, Nat. Commun. 2018, 9, 2452;
- 13bX. Yu, Z.-Y. Yu, X.-L. Zhang, Y.-R. Zheng, Y. Duan, Q. Gao, R. Wu, B. Sun, M.-R. Gao, G. Wang, S.-H. Yu, J. Am. Chem. Soc. 2019, 141, 7537–7543.
- 14
- 14aS. Bag, P. N. Trikalitis, P. J. Chupas, G. S. Armatas, M. G. Kanatzidis, Science 2007, 317, 490–493;
- 14bX. Shan, N. Sui, W. Liu, M. Liu, J. Liu, J. Mater. Chem. A 2019, 7, 4446–4450;
- 14cJ. Liu, K. He, W. Wu, T.-B. Song, M. G. Kanatzidis, J. Am. Chem. Soc. 2017, 139, 2900–2903;
- 14dJ. Liu, M. S. Kelley, W. Wu, A. Banerjee, A. P. Douvalis, J. Wu, Y. Zhang, G. C. Schatz, M. G. Kanatzidis, Proc. Natl. Acad. Sci. USA 2016, 113, 5530–5535.
- 15K. Polychronopoulou, C. D. Malliakas, J. He, M. G. Kanatzidis, Chem. Mater. 2012, 24, 3380–3392.
- 16K. Du, L. Zheng, T. Wang, J. Zhuo, Z. Zhu, Y. Shao, M. Li, ACS Appl. Mater. Interfaces 2017, 9, 18675–18681.
- 17A. Müller, V. Wittneben, E. Krickemeyer, H. Bögge, M. Lemke, Z. Anorg. Allg. Chem. 1991, 605, 175–188.
- 18S. Bag, A. F. Gaudette, M. E. Bussell, M. G. Kanatzidis, Nat. Chem. 2009, 1, 217.
- 19H. Wang, C. Tsai, D. Kong, K. Chan, F. Abild-Pedersen, J. K. Nørskov, Y. Cui, Nano Res. 2015, 8, 566–575.
- 20
- 20aY. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, J. Am. Chem. Soc. 2011, 133, 7296–7299;
- 20bY. Shi, Y. Xu, S. Zhuo, J. Zhang, B. Zhang, ACS Appl. Mater. Interfaces 2015, 7, 2376–2384.
- 21S. Jin, ACS Energy Lett. 2017, 2, 1937–1938.
- 22B. You, Y. Sun, Adv. Energy Mater. 2016, 6, 1502333.
- 23
- 23aS. Niu, W.-J. Jiang, Z. Wei, T. Tang, J. Ma, J.-S. Hu, L.-J. Wan, J. Am. Chem. Soc. 2019, 141, 7005–7013;
- 23bA. Li, H. Ooka, N. Bonnet, T. Hayashi, Y. Sun, Q. Jiang, C. Li, H. Han, R. Nakamura, Angew. Chem. Int. Ed. 2019, 58, 5054–5058; Angew. Chem. 2019, 131, 5108–5112.
- 24W. Liu, M. Zhu, J. Liu, W. Hu, X. Li, J. Liu, Inorg. Chem. Front. 2018, 5, 2198–2204.
- 25G. Chen, Z. Hu, Y. Zhu, B. Gu, Y. Zhong, H. J. Lin, C. T. Chen, W. Zhou, Z. Shao, Adv. Mater. 2018, 30, 1804333.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.