Dual Illumination Enhances Transformation of an Engineered Green-to-Red Photoconvertible Fluorescent Protein
Taylor D. Krueger
Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331 USA
Search for more papers by this authorDr. Longteng Tang
Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331 USA
Search for more papers by this authorDr. Liangdong Zhu
Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331 USA
Search for more papers by this authorIsabella L. Breen
School of Molecular Sciences, Center for Bioenergy and Photosynthesis, Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287 USA
Search for more papers by this authorProf. Dr. Rebekka M. Wachter
School of Molecular Sciences, Center for Bioenergy and Photosynthesis, Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Chong Fang
Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331 USA
Search for more papers by this authorTaylor D. Krueger
Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331 USA
Search for more papers by this authorDr. Longteng Tang
Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331 USA
Search for more papers by this authorDr. Liangdong Zhu
Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331 USA
Search for more papers by this authorIsabella L. Breen
School of Molecular Sciences, Center for Bioenergy and Photosynthesis, Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287 USA
Search for more papers by this authorProf. Dr. Rebekka M. Wachter
School of Molecular Sciences, Center for Bioenergy and Photosynthesis, Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Chong Fang
Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331 USA
Search for more papers by this authorAbstract
The molecular mechanisms for the photoconversion of fluorescent proteins remain elusive owing to the challenges of monitoring chromophore structural dynamics during the light-induced processes. We implemented time-resolved electronic and stimulated Raman spectroscopies to reveal two hidden species of an engineered ancestral GFP-like protein LEA, involving semi-trapped protonated and trapped deprotonated chromophores en route to photoconversion in pH 7.9 buffer. A new dual-illumination approach was examined, using 400 and 505 nm light simultaneously to achieve faster conversion and higher color contrast. Substitution of UV irradiation with visible light benefits bioimaging, while the spectral benchmark of a trapped chromophore with characteristic ring twisting and bridge-H bending motions enables rational design of functional proteins. With the improved H-bonding network and structural motions, the photoexcited chromophore could increase the photoswitching-aided photoconversion while reducing trapped species.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201911379-sup-0001-misc_information.pdf5.7 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1O. Shimomura, F. H. Johnson, Y. Saiga, J. Cell. Comp. Physiol. 1962, 59, 223–239.
- 2
- 2aG. H. Patterson, J. Lippincott-Schwartz, Science 2002, 297, 1873–1877;
- 2bN. G. Gurskaya, V. V. Verkhusha, A. S. Shcheglov, D. B. Staroverov, T. V. Chepurnykh, A. F. Fradkov, S. Lukyanov, K. A. Lukyanov, Nat. Biotechnol. 2006, 24, 461–465;
- 2cD. M. Chudakov, S. Lukyanov, K. A. Lukyanov, Nat. Protocols 2007, 2, 2024–2032.
- 3
- 3aV. Adam, M. Lelimousin, S. Boehme, G. Desfonds, K. Nienhaus, M. J. Field, J. Wiedenmann, S. McSweeney, G. U. Nienhaus, D. Bourgeois, Proc. Natl. Acad. Sci. USA 2008, 105, 18343–18348;
- 3bD. Bourgeois, V. Adam, IUBMB Life 2012, 64, 482–491;
- 3cK. Nienhaus, G. U. Nienhaus, Chem. Soc. Rev. 2014, 43, 1088–1106.
- 4
- 4aF. V. Subach, V. V. Verkhusha, Chem. Rev. 2012, 112, 4308–4327;
- 4bA. Acharya, A. M. Bogdanov, B. L. Grigorenko, K. B. Bravaya, A. V. Nemukhin, K. A. Lukyanov, A. I. Krylov, Chem. Rev. 2017, 117, 758–795.
- 5
- 5aM. Fernández-Suárez, A. Y. Ting, Nat. Rev. Mol. Cell Biol. 2008, 9, 929–943;
- 5bB. Huang, H. Babcock, X. Zhuang, Cell 2010, 143, 1047–1058;
- 5cD. M. Shcherbakova, P. Sengupta, J. Lippincott-Schwartz, V. V. Verkhusha, Annu. Rev. Biophys. 2014, 43, 303–329.
- 6
- 6aJ. B. Grimm, T. Klein, B. G. Kopek, G. Shtengel, H. F. Hess, M. Sauer, L. D. Lavis, Angew. Chem. Int. Ed. 2016, 55, 1723–1727; Angew. Chem. 2016, 128, 1755–1759;
- 6bJ.-B. Li, H.-W. Liu, T. Fu, R. Wang, X.-B. Zhang, W. Tan, Trends Chem. 2019, 1, 224–234;
- 6cE. De Zitter, D. Thédié, V. Mönkemöller, S. Hugelier, J. Beaudouin, V. Adam, M. Byrdin, L. Van Meervelt, P. Dedecker, D. Bourgeois, Nat. Methods 2019, 16, 707–710.
- 7
- 7aE. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, Science 2006, 313, 1642–1645;
- 7bM. J. Rust, M. Bates, X. Zhuang, Nat. Methods 2006, 3, 793–796;
- 7cW. E. Moerner, Proc. Natl. Acad. Sci. USA 2007, 104, 12596–12602.
- 8 Fluorescent Proteins II: Application of Fluorescent Protein Technology, Vol. 12 (Ed.: ), Springer, Berlin, 2012.
- 9
- 9aP. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, R. A. Mathies, Science 2005, 310, 1006–1009;
- 9bC. Fang, J. D. Bauman, K. Das, A. Remorino, E. Arnold, R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 2008, 105, 1472–1477;
- 9cN. Coquelle, M. Sliwa, J. Woodhouse, G. Schirò, V. Adam, A. Aquila, T. R. M. Barends, S. Boutet, M. Byrdin, S. Carbajo, E. De la Mora, R. B. Doak, et al., Nat. Chem. 2017, 10, 31–37.
- 10H. Kim, T. J. Grunkemeyer, C. Modi, L. Chen, R. Fromme, M. V. Matz, R. M. Wachter, Biochemistry 2013, 52, 8048–8059.
- 11H. Kim, T. Zou, C. Modi, K. Dörner, T. J. Grunkemeyer, L. Chen, R. Fromme, M. V. Matz, S. B. Ozkan, R. M. Wachter, Structure 2015, 23, 34–43.
- 12
- 12aJ. L. Tubbs, J. A. Tainer, E. D. Getzoff, Biochemistry 2005, 44, 9833–9840;
- 12bH. Tsutsui, H. Shimizu, H. Mizuno, N. Nukina, T. Furuta, A. Miyawaki, Chem. Biol. 2009, 16, 1140–1147;
- 12cR. M. Wachter, J. L. Watkins, H. Kim, Biochemistry 2010, 49, 7417–7427.
- 13
- 13aC. Fang, R. R. Frontiera, R. Tran, R. A. Mathies, Nature 2009, 462, 200–204;
- 13bS. R. Meech, Chem. Soc. Rev. 2009, 38, 2922–2934;
- 13cC. Fang, L. Tang, B. G. Oscar, C. Chen, J. Phys. Chem. Lett. 2018, 9, 3253–3263.
- 14L. Tang, W. Liu, Y. Wang, L. Zhu, F. Han, C. Fang, J. Phys. Chem. Lett. 2016, 7, 1225–1230.
- 15
- 15aN. Durisic, L. Laparra-Cuervo, Á. Sandoval-Álvarez, J. S. Borbely, M. Lakadamyali, Nat. Methods 2014, 11, 156–162;
- 15bD. Thédié, R. Berardozzi, V. Adam, D. Bourgeois, J. Phys. Chem. Lett. 2017, 8, 4424–4430.
- 16K. Nienhaus, G. U. Nienhaus, J. Wiedenmann, H. Nar, Proc. Natl. Acad. Sci. USA 2005, 102, 9156–9159.
- 17X. X. Zhou, M. Z. Lin, Curr. Opin. Chem. Biol. 2013, 17, 682–690.
- 18
- 18aR. Berardozzi, V. Adam, A. Martins, D. Bourgeois, J. Am. Chem. Soc. 2016, 138, 558–565;
- 18bB. Turkowyd, A. Balinovic, D. Virant, H. G. G. Carnero, F. Caldana, M. Endesfelder, D. Bourgeois, U. Endesfelder, Angew. Chem. Int. Ed. 2017, 56, 11634–11639; Angew. Chem. 2017, 129, 11792–11798.
- 19M. A. Mohr, P. Argast, P. Pantazis, Nat. Protoc. 2016, 11, 2419–2431.
- 20
- 20aW. P. Dempsey, L. Georgieva, P. M. Helbling, A. Y. Sonay, T. V. Truong, M. Haffner, P. Pantazis, Nat. Methods 2015, 12, 645–648;
- 20bM. A. Mohr, A. Y. Kobitski, L. R. Sabater, K. Nienhaus, C. J. Obara, J. Lippincott-Schwartz, G. U. Nienhaus, P. Pantazis, Angew. Chem. Int. Ed. 2017, 56, 11628–11633; Angew. Chem. 2017, 129, 11786–11791;
- 20cM. A. Mohr, P. Pantazis, Chem. Eur. J. 2018, 24, 8268–8274.
- 21R. Ando, C. Flors, H. Mizuno, J. Hofkens, A. Miyawaki, Biophys. J. 2007, 92, L97–L99.
- 22B. Moeyaert, N. Nguyen Bich, E. De Zitter, S. Rocha, K. Clays, H. Mizuno, L. van Meervelt, J. Hofkens, P. Dedecker, ACS Nano 2014, 8, 1664–1673.
- 23
- 23aL. Zhu, W. Liu, C. Fang, Appl. Phys. Lett. 2014, 105, 041106;
- 23bD. R. Dietze, R. A. Mathies, ChemPhysChem 2016, 17, 1224–1251;
- 23cL. Zhu, S. Saha, Y. Wang, D. A. Keszler, C. Fang, J. Phys. Chem. B 2016, 120, 13161–13168.
- 24M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, et al., Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford, CT, 2016.
- 25
- 25aT. Lian, B. Locke, Y. Kholodenko, R. M. Hochstrasser, J. Phys. Chem. 1994, 98, 11648–11656;
- 25bP. M. Champion, Science 2005, 310, 980–982;
- 25cW. Liu, Y. Wang, L. Tang, B. G. Oscar, L. Zhu, C. Fang, Chem. Sci. 2016, 7, 5484–5494.
- 26S. R. Tachibana, L. Tang, L. Zhu, W. Liu, Y. Wang, C. Fang, J. Phys. Chem. B 2018, 122, 11986–11995.
- 27C. Chen, L. Zhu, M. S. Baranov, L. Tang, N. S. Baleeva, A. Y. Smirnov, I. V. Yampolsky, K. M. Solntsev, C. Fang, J. Phys. Chem. B 2019, 123, 3804–3821.
- 28
- 28aR. Berera, R. van Grondelle, J. T. M. Kennis, Photosynth. Res. 2009, 101, 105–118;
- 28bL. Tang, W. Liu, Y. Wang, Y. Zhao, B. G. Oscar, R. E. Campbell, C. Fang, Chem. Eur. J. 2015, 21, 6481–6490;
- 28cL. Tang, C. Fang, J. Phys. Chem. B 2019, 123, 4915–4928.
- 29
- 29aC. Chen, W. Liu, M. S. Baranov, N. S. Baleeva, I. V. Yampolsky, L. Zhu, Y. Wang, A. Shamir, K. M. Solntsev, C. Fang, J. Phys. Chem. Lett. 2017, 8, 5921–5928;
- 29bD. Laage, T. Elsaesser, J. T. Hynes, Chem. Rev. 2017, 117, 10694–10725.
- 30
- 30aT. Kumpulainen, B. Lang, A. Rosspeintner, E. Vauthey, Chem. Rev. 2017, 117, 10826–10939;
- 30bL. Tang, L. Zhu, Y. Wang, C. Fang, J. Phys. Chem. Lett. 2018, 9, 4969–4975.
- 31S. Premi, S. Wallisch, C. M. Mano, A. B. Weiner, A. Bacchiocchi, K. Wakamatsu, E. J. H. Bechara, R. Halaban, T. Douki, D. E. Brash, Science 2015, 347, 842–847.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.