Biomimetic Networks with Enhanced Photodynamic Antimicrobial Activity from Conjugated Polythiophene/Polyisocyanide Hybrid Hydrogels
Dr. Hongbo Yuan
Institute of Biophysics, Hebei University of Technology, Tianjin, 300401 P. R. China
Search for more papers by this authorProf. Dr. Yong Zhan
Institute of Biophysics, Hebei University of Technology, Tianjin, 300401 P. R. China
Search for more papers by this authorProf. Dr. Alan E. Rowan
Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072 Australia
Search for more papers by this authorCorresponding Author
Prof. Dr. Chengfen Xing
Institute of Biophysics, Hebei University of Technology, Tianjin, 300401 P. R. China
Search for more papers by this authorProf. Dr. Paul H. J. Kouwer
Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
Search for more papers by this authorDr. Hongbo Yuan
Institute of Biophysics, Hebei University of Technology, Tianjin, 300401 P. R. China
Search for more papers by this authorProf. Dr. Yong Zhan
Institute of Biophysics, Hebei University of Technology, Tianjin, 300401 P. R. China
Search for more papers by this authorProf. Dr. Alan E. Rowan
Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072 Australia
Search for more papers by this authorCorresponding Author
Prof. Dr. Chengfen Xing
Institute of Biophysics, Hebei University of Technology, Tianjin, 300401 P. R. China
Search for more papers by this authorProf. Dr. Paul H. J. Kouwer
Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
Search for more papers by this authorAbstract
Hybrid biomimetic hydrogels with enhanced reactive oxygen species (ROS)-generation efficiency under 600 nm light show high antibacterial activity. The hybrid gels are composed of helical tri(ethylene glycol)-functionalized polyisocyanides (PICs) and a conformation-sensitive conjugated polythiophene, poly(3-(3′-N,N,N-triethylammonium-1′-propyloxy)-4-methyl-2,5-thiophene chloride) (PMNT). The PIC polymer serves as a scaffold to trap and align the PMNT backbone into a highly ordered conformation, resulting in redshifted, new sharp bands in the absorption and fluorescence spectra. Similar to PIC, the hybrid closely mimics the mechanical properties of biological gels, such as collagen and fibrin, including the strain stiffening properties at low stresses. Moreover, the PMNT/PIC hybrids show much higher ROS production efficiency under red light than PMNT only, leading to an efficient photodynamic antimicrobial effect towards various pathogenic bacteria.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201910979-sup-0001-misc_information.pdf814.1 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aR. Wang, J. Li, W. Chen, T. Xu, S. Yun, Z. Xu, Z. Xu, T. Sato, B. Chi, H. Xu, Adv. Funct. Mater. 2017, 27, 1604894;
- 1bR. Dong, X. Zhao, B. Guo, P. X. Ma, ACS Appl. Mater. Interfaces 2016, 8, 17138–17150;
- 1cN. Nandi, K. Gayen, S. Ghosh, D. Bhunia, S. Kirkham, S. K. Sen, S. Ghosh, I. W. Hamley, A. Banerjee, Biomacromolecules 2017, 18, 3621–3629.
- 2H. Cheng, K. Yue, M. Kazemzadeh-Narbat, Y. Liu, A. Khalilpour, B. Li, Y. S. Zhang, N. Annabi, A. Khademhosseini, ACS Appl. Mater. Interfaces 2017, 9, 11428–11439.
- 3
- 3aC. González-Henríquez, M. Sarabia-Vallejos, J. Rodriguez-Hernandez, Materials 2017, 10, 232;
- 3bE. Caló, V. V. Khutoryanskiy, Eur. Polym. J. 2015, 65, 252–267;
- 3cS. Li, S. Dong, W. Xu, S. Tu, L. Yan, C. Zhao, J. Ding, X. Chen, Adv. Sci. 2018, 5, 1700527.
- 4D. A. Salick, J. K. Kretsinger, D. J. Pochan, J. P. Schneider, J. Am. Chem. Soc. 2007, 129, 14793–14799.
- 5
- 5aX. Zhao, H. Wu, B. Guo, R. Dong, Y. Qiu, P. X. Ma, Biomaterials 2017, 122, 34–47;
- 5bX. Zhao, P. Li, B. Guo, P. X. Ma, Acta Biomater. 2015, 26, 236–248.
- 6C. Mao, Y. Xiang, X. Liu, Z. Cui, X. Yang, K. W. K. Yeung, H. Pan, X. Wang, P. K. Chu, S. Wu, ACS Nano 2017, 11, 9010–9021.
- 7
- 7aS. Liu, H. Yuan, H. Bai, P. Zhang, F. Lv, L. Liu, Z. Dai, J. Bao, S. Wang, J. Am. Chem. Soc. 2018, 140, 2284–2291;
- 7bJ. Li, Q. Zhao, F. Shi, C. Liu, Y. Tang, Adv. Healthcare Mater. 2016, 5, 2967–2971;
- 7cJ. F. Lovell, T. W. B. Liu, J. Chen, G. Zheng, Chem. Rev. 2010, 110, 2839–2857;
- 7dC. Xing, Q. Xu, H. Tang, L. Liu, S. Wang, J. Am. Chem. Soc. 2009, 131, 13117–13124.
- 8
- 8aS. Lee, H. Cheng, M. Chi, Q. Xu, X. Chen, C.-Y. Eom, T. D. James, S. Park, J. Yoon, Biosens. Bioelectron. 2016, 77, 1016–1019;
- 8bC. Li, F. Lin, W. Sun, F.-G. Wu, H. Yang, R. Lv, Y.-X. Zhu, H.-R. Jia, C. Wang, G. Gao, Z. Chen, ACS Appl. Mater. Interfaces 2018, 10, 16715–16722;
- 8cH. Bai, H. Yuan, C. Nie, B. Wang, F. Lv, L. Liu, S. Wang, Angew. Chem. Int. Ed. 2015, 54, 13208–13213; Angew. Chem. 2015, 127, 13406–13411;
- 8dC. Xing, G. Yang, L. Liu, Q. Yang, F. Lv, S. Wang, Small 2012, 8, 525–529;
- 8eR. Li, R. Niu, J. Qi, H. Yuan, Y. Fan, H. An, W. Yan, H. Li, Y. Zhan, C. Xing, ACS Appl. Mater. Interfaces 2015, 7, 14569–14572.
- 9P. H. Kouwer, M. Koepf, V. A. Le Sage, M. Jaspers, A. M. van Buul, Z. H. Eksteen-Akeroyd, T. Woltinge, E. Schwartz, H. J. Kitto, R. Hoogenboom, et al. Nature 2013, 493, 651–655.
- 10
- 10aC. Storm, J. J. Pastore, F. C. MacKintosh, T. C. Lubensky, P. A. Janmey, Nature 2005, 435, 191;
- 10bM. L. Gardel, J. H. Shin, F. C. MacKintosh, L. Mahadevan, P. Matsudaira, D. A. Weitz, Science 2004, 304, 1301;
- 10cJ. L. Shivers, S. Arzash, A. Sharma, F. C. MacKintosh, Phys. Rev. Lett. 2019, 122, 188003;
- 10dS. Arzash, J. Shivers, F. MacKintosh, Bull. Am. Phys. Soc. 2019, 64, 172.
- 11J. P. Winer, S. Oake, P. A. Janmey, PloS one 2009, 4, e6382.
- 12
- 12aC. S. Chen, J. Tan, J. Tien, Annu. Rev. Biomed. Eng. 2004, 6, 275–302;
- 12bH. Koo, K. M. Yamada, Curr. Opin. Cell Biol. 2016, 42, 102–112;
- 12cG. Huang, F. Li, X. Zhao, Y. Ma, Y. Li, M. Lin, G. Jin, T. J. Lu, G. M. Genin, F. Xu, Chem. Rev. 2017, 117, 12764–12850.
- 13
- 13aR. K. Das, V. Gocheva, R. Hammink, O. F. Zouani, A. E. Rowan, Nat. mater. 2016, 15, 318–325;
- 13bK. Liu, S. M. Mihaila, A. Rowan, E. Oosterwijk, P. H. J. Kouwer, Biomacromolecules 2019, 20, 826–834.
- 14
- 14aR. C. Op't Veld, O. I. van den Boomen, D. M. Lundvig, E. M. Bronkhorst, P. H. Kouwer, J. A. Jansen, E. Middelkoop, J. W. Von den Hoff, A. E. Rowan, F. A. Wagener, Biomaterials 2018, 181, 392–401;
- 14bR. C. Op't Veld, L. Joosten, O. van den Boomen, O. Boerman, P. H. Kouwer, E. Middelkoop, A. Rowan, J. A. Jansen, F. Walboomers, F. Wagener, Biomater. Sci. 2019, 7, 3041–3050.
- 15M. Koepf, H. J. Kitto, E. Schwartz, P. H. Kouwer, R. J. Nolte, A. E. Rowan, Eur. Polym. J. 2013, 49, 1510–1522.
- 16S. Mandal, Z. H. Eksteen-Akeroyd, M. J. Jacobs, R. Hammink, M. Koepf, A. J. Lambeck, J. C. van Hest, C. J. Wilson, K. Blank, C. G. Figdor, Chem. Sci. 2013, 4, 4168–4174.
- 17H. A. Ho, M. Boissinot, M. G. Bergeron, G. Corbeil, K. Dore, D. Boudreau, M. Leclerc, Angew. Chem. Int. Ed. 2002, 41, 1548–1551;
10.1002/1521-3773(20020503)41:9<1548::AID-ANIE1548>3.0.CO;2-I CAS PubMed Web of Science® Google ScholarAngew. Chem. 2002, 114, 1618–1621.
- 18Y. Tang, F. Feng, F. He, S. Wang, Y. Li, D. Zhu, J. Am. Chem. Soc. 2006, 128, 14972–14976.
- 19
- 19aF. Brustolin, F. Goldoni, E. Meijer, N. A. Sommerdijk, Macromolecules 2002, 35, 1054–1059;
- 19bB. Langeveld-Voss, R. Janssen, E. Meijer, J. Mol. Struct. 2000, 521, 285–301.
- 20P. H. J. Kouwer, P. de Almeida, O. ven den Boomen, Z. H. Eksteen-Akeroyd, R. Hammink, M. Jaspers, S. Kragt, M. F. J. Mabesoone, R. J. M. Nolte, A. E. Rowan, M. G. T. A. Rutten, V. A. A. Le Sage, D. C. Schoenmakers, C. Xing, J. Xu, Chin. Chem. Lett. 2018, 29, 281–284.
- 21M. Jaspers, A. Pape, I. K. Voets, A. E. Rowan, G. Portale, P. H. Kouwer, Biomacromolecules 2016, 17, 2642–2649.
- 22M. Jaspers, M. Dennison, M. F. J. Mabesoone, F. C. MacKintosh, A. E. Rowan, P. H. J. Kouwer, Nat. Commun. 2014, 5, 5808.
- 23
- 23aE. T. Niles, J. D. Roehling, H. Yamagata, A. J. Wise, F. C. Spano, A. J. Moulé, J. K. Grey, J. Phys. Chem. Lett. 2012, 3, 259–263;
- 23bM. Baghgar, J. A. Labastide, F. Bokel, R. C. Hayward, M. D. Barnes, J. Phys. Chem. C 2014, 118, 2229–2235.
- 24K. Suntharalingam, S. G. Awuah, P. M. Bruno, T. C. Johnstone, F. Wang, W. Lin, Y.-R. Zheng, J. E. Page, M. T. Hemann, S. J. Lippard, J. Am. Chem. Soc. 2015, 137, 2967–2974.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.