Halide Anion Triggered Reactions of Michael Acceptors with Tropylium Ion†
Dr. Uyen P. N. Tran
School of Chemistry, UNSW Sydney, Australia
Search for more papers by this authorDr. Vien T. Huynh
School of Chemistry, University of Sydney, Australia
Search for more papers by this authorDr. Mohan Bhadbhade
Mark Wainwright Analytical Centre, UNSW Sydney, Australia
Search for more papers by this authorCorresponding Author
Dr. Thanh V. Nguyen
School of Chemistry, UNSW Sydney, Australia
Search for more papers by this authorDr. Uyen P. N. Tran
School of Chemistry, UNSW Sydney, Australia
Search for more papers by this authorDr. Vien T. Huynh
School of Chemistry, University of Sydney, Australia
Search for more papers by this authorDr. Mohan Bhadbhade
Mark Wainwright Analytical Centre, UNSW Sydney, Australia
Search for more papers by this authorCorresponding Author
Dr. Thanh V. Nguyen
School of Chemistry, UNSW Sydney, Australia
Search for more papers by this authorA previous version of this manuscript has been deposited on a preprint server (https://doi.org/10.26434/chemrxiv.9639227.v1).
Abstract
Tropylium bromide undergoes noncatalyzed, regioselective additions to a large variety of Michael acceptors. In this way, acrylic esters are converted into β-bromo-α-cycloheptatrienylpropionic esters. The reactions are interpreted as nucleophilic attack of bromide ions at the electron-deficient olefins and the approach of the tropylium ion to the incipient carbanion. Quantum chemical calculations were performed to elucidate the analogy to the amine- or phosphine-catalyzed Rauhut–Currier reactions. Subsequent synthetic transformations of the bromo-cycloheptatrienylated adducts are reported.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201910578-sup-0001-misc_information.pdf7.2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aD. Seebach, Angew. Chem. Int. Ed. Engl. 1990, 29, 1320–1367; Angew. Chem. 1990, 102, 1363–1409;
- 1bX. Bugaut, F. Glorius, Chem. Soc. Rev. 2012, 41, 3511–3522;
- 1cX.-Y. Chen, S. Ye, Org. Biomol. Chem. 2013, 11, 7991–7998;
- 1dD. M. Flanigan, F. Romanov-Michailidis, N. A. White, T. Rovis, Chem. Rev. 2015, 115, 9307–9387;
- 1eH. Guo, Y. C. Fan, Z. Sun, Y. Wu, O. Kwon, Chem. Rev. 2018, 118, 10049–10293.
- 2
- 2aC. E. Aroyan, A. Dermenci, S. J. Miller, Tetrahedron 2009, 65, 4069–4084;
- 2bD. Basavaiah, B. S. Reddy, S. S. Badsara, Chem. Rev. 2010, 110, 5447–5674;
- 2cY. Wei, M. Shi, Chem. Rev. 2013, 113, 6659–6690;
- 2dH. Ni, W.-L. Chan, Y. Lu, Chem. Rev. 2018, 118, 9344–9411.
- 3
- 3aM. N. Hopkinson, C. Richter, M. Schedler, F. Glorius, Nature 2014, 510, 485;
- 3bC. Fischer, S. W. Smith, D. A. Powell, G. C. Fu, J. Am. Chem. Soc. 2006, 128, 1472–1473;
- 3cA. T. Biju, M. Padmanaban, N. E. Wurz, F. Glorius, Angew. Chem. Int. Ed. 2011, 50, 8412–8415; Angew. Chem. 2011, 123, 8562–8565;
- 3dS. Matsuoka, Y. Ota, A. Washio, A. Katada, K. Ichioka, K. Takagi, M. Suzuki, Org. Lett. 2011, 13, 3722–3725;
- 3eT. Kato, Y. Ota, S. Matsuoka, K. Takagi, M. Suzuki, J. Org. Chem. 2013, 78, 8739–8747;
- 3fS. Matsuoka, S. Namera, A. Washio, K. Takagi, M. Suzuki, Org. Lett. 2013, 15, 5916–5919;
- 3gT. Kato, S. Matsuoka, M. Suzuki, J. Org. Chem. 2014, 79, 4484–4491.
- 4
- 4aS. E. Denmark, G. L. Beutner, Angew. Chem. Int. Ed. 2008, 47, 1560–1638; Angew. Chem. 2008, 120, 1584–1663;
- 4bE. Vedejs, S. E. Denmark, Lewis Base Catalysis in Organic Synthesis, Vol. 3, Wiley, Hoboken, 2016.
10.1002/9783527675142 Google Scholar
- 5H. Mayr, J. Ammer, M. Baidya, B. Maji, T. A. Nigst, A. R. Ofial, T. Singer, J. Am. Chem. Soc. 2015, 137, 2580–2599.
- 6
- 6aG. Merling, Ber. Dtsch. Chem. Ges. 1891, 24, 3108–3126;
10.1002/cber.189102402151 Google Scholar
- 6bW. Von E. Doering, L. H. Knox, J. Am. Chem. Soc. 1954, 76, 3203–3206;
- 6cT. V. Nguyen, A. Bekensir, Org. Lett. 2014, 16, 1720–1723;
- 6dT. V. Nguyen, M. Hall, Tetrahedron Lett. 2014, 55, 6895–6898;
- 6eT. V. Nguyen, D. J. M. Lyons, Chem. Commun. 2015, 51, 3131–3134;
- 6fD. J. M. Lyons, R. D. Crocker, M. Blümel, T. V. Nguyen, Angew. Chem. Int. Ed. 2017, 56, 1466–1484; Angew. Chem. 2017, 129, 1488–1506;
- 6gD. J. M. Lyons, R. D. Crocker, D. Enders, T. V. Nguyen, Green Chem. 2017, 19, 3993–3996;
- 6hM. A. Hussein, V. T. Huynh, R. Hommelsheim, R. M. Koenigs, T. V. Nguyen, Chem. Commun. 2018, 54, 12970–12973;
- 6iD. Lyons, R. Crocker, T. V. Nguyen, Chem. Eur. J. 2018, 24, 10959–10965;
- 6jG. Oss, S. D. de Vos, K. N. H. Luc, J. B. Harper, T. V. Nguyen, J. Org. Chem. 2018, 83, 1000–1010;
- 6kG. Oss, J. Ho, T. V. Nguyen, Eur. J. Org. Chem. 2018, 3974–3981;
- 6lU. P. N. Tran, G. Oss, D. P. Pace, J. Ho, T. V. Nguyen, Chem. Sci. 2018, 9, 5145–5151.
- 7
- 7aM. Mato, C. García-Morales, A. M. Echavarren, ChemCatChem 2019, 11, 53–72;
- 7bC. R. Solorio-Alvarado, Y. Wang, A. M. Echavarren, J. Am. Chem. Soc. 2011, 133, 11952–11955;
- 7cP. R. McGonigal, C. de León, Y. Wang, A. Homs, C. R. Solorio-Alvarado, A. M. Echavarren, Angew. Chem. Int. Ed. 2012, 51, 13093–13096; Angew. Chem. 2012, 124, 13270–13273;
- 7dY. Wang, P. R. McGonigal, B. Herlé, M. Besora, A. M. Echavarren, J. Am. Chem. Soc. 2014, 136, 801–809;
- 7eY. Wang, M. E. Muratore, Z. Rong, A. M. Echavarren, Angew. Chem. Int. Ed. 2014, 53, 14022–14026; Angew. Chem. 2014, 126, 14246–14250;
- 7fS. Ferrer, A. M. Echavarren, Angew. Chem. Int. Ed. 2016, 55, 11178–11182; Angew. Chem. 2016, 128, 11344–11348;
- 7gB. Herlé, P. M. Holstein, A. M. Echavarren, ACS Catal. 2017, 7, 3668–3675;
- 7hM. Vayer, R. Guillot, C. Bour, V. Gandon, Chem. Eur. J. 2017, 23, 13901–13905;
- 7iX. Yin, M. Mato, A. M. Echavarren, Angew. Chem. Int. Ed. 2017, 56, 14591–14595; Angew. Chem. 2017, 129, 14783–14787;
- 7jA. N. Bismillah, J. Sturala, B. M. Chapin, D. S. Yufit, P. Hodgkinson, P. R. McGonigal, Chem. Sci. 2018, 9, 8631;
- 7kM. Mato, B. Herle, A. M. Echavarren, Org. Lett. 2018, 20, 4341–4345;
- 7lM. Vayer, R. Guillot, C. Bour, V. Gandon, J. Org. Chem. 2018, 83, 11309–11317;
- 7mA. M. Echavarren, M. Mato, Angew. Chem. Int. Ed. 2019, 58, 2088–2092; Angew. Chem. 2019, 131, 2110–2114.
- 8A. Ledwith, Addition and Condensation Polymerization Processes, Vol. 91, American Chemical Society, Washington, 1969, pp. 317–334.
- 9
- 9aG. Li, J. Gao, H.-X. Wei, M. Enright, Org. Lett. 2000, 2, 617–620;
- 9bZ. Han, S. Uehira, H. Shinokubo, K. Oshima, J. Org. Chem. 2001, 66, 7854–7857;
- 9cT. Iwamura, M. Fujita, T. Kawakita, S. Kinoshita, S.-i. Watanabe, T. Kataoka, Tetrahedron 2001, 57, 8455–8462;
- 9dM. Baidya, G. Y. Remennikov, P. Mayer, H. Mayr, Chem. Eur. J. 2010, 16, 1365–1371;
- 9eC. Patel, R. B. Sunoj, J. Org. Chem. 2010, 75, 359–367;
- 9fM. Shi, J.-K. Jiang, Y.-S. Feng, Org. Lett. 2000, 2, 2397–2400.
- 10
- 10aP. M. Brown, N. Käppel, P. J. Murphy, Tetrahedron Lett. 2002, 43, 8707–8710;
- 10bP. M. Brown, N. Käppel, P. J. Murphy, S. J. Coles, M. B. Hursthouse, Tetrahedron 2007, 63, 1100–1106;
- 10cC. E. Aroyan, S. J. Miller, J. Am. Chem. Soc. 2007, 129, 256–257.
- 11
- 11aJ. Boseken, H. J. Prins, Versl. Akad. Wetenschappen 1910, 19, 776;
- 11bL. Schmerling, J. Am. Chem. Soc. 1945, 67, 1152–1154;
- 11cH. Mayr, W. Striepe, J. Org. Chem. 1983, 48, 1159–1165.
- 12
- 12aM. S. Kharasch, E. V. Jensen, W. H. Urry, Science 1945, 102, 128–128;
- 12bX.-W. Lan, N.-X. Wang, Y. Xing, Eur. J. Org. Chem. 2017, 5821–5851.
- 13
- 13aX. Wu, W. Hao, K.-Y. Ye, B. Jiang, G. Pombar, Z. Song, S. Lin, J. Am. Chem. Soc. 2018, 140, 14836–14843;
- 13bN. Fu, Y. Shen, A. R. Allen, L. Song, A. Ozaki, S. Lin, ACS Catal. 2019, 9, 746–754.
- 14R. Solaiselvi, P. Shanmugam, A. B. Mandal, Org. Lett. 2013, 15, 1186–1189.
- 15See the Supporting Information for more details.
- 16
- 16aR. Caputo, C. Ferreri, G. Palumbo, E. Wenkert, Tetrahedron Lett. 1984, 25, 577–578;
- 16bA. R. Bassindale, T. Stout, Tetrahedron Lett. 1984, 25, 1631–1632.
- 17J. S. Hartman, G. J. Schrobilgen, Inorg. Chem. 1972, 11, 940–951.
- 18D. S. Allgäuer, H. Jangra, H. Asahara, Z. Li, Q. Chen, H. Zipse, A. R. Ofial, H. Mayr, J. Am. Chem. Soc. 2017, 139, 13318–13329.
- 19Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215–241.
- 20A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378–6396.
- 21The computational calculations for mechanistic details of Procedure B are rather complicated and will be reported in a follow-up study in due course.
- 22Y. Li, S. Du, Int. J. Quantum Chem. 2017, 117, e25325.
- 23
- 23aC. Schmidt, U. Kazmaier, Org. Biomol. Chem. 2008, 6, 4643–4648;
- 23bV. Rogakos, D. Georgiadis, V. Dive, A. Yiotakis, Org. Lett. 2009, 11, 4696–4699;
- 23cD. Fegyverneki, N. Kolozsvári, D. Molnár, O. Egyed, T. Holczbauer, T. Soós, Chem. Eur. J. 2019, 25, 2179–2183.
- 24
- 24aW. D. Mackay, J. S. Johnson, Org. Lett. 2016, 18, 536–539;
- 24bK. N. Houk, R. B. Woodward, J. Am. Chem. Soc. 1970, 92, 4143–4145;
- 24cR. Yokoyama, S. Ito, M. Watanabe, N. Harada, C. Kabuto, N. Morita, J. Chem. Soc. Perkin Trans. 2 2001, 2257–2261;
- 24dA. Tenaglia, S. Gaillard, Angew. Chem. Int. Ed. 2008, 47, 2454–2457; Angew. Chem. 2008, 120, 2488–2491;
- 24eG. Hilt, A. Paul, C. Hengst, Synthesis 2009, 3305–3310;
- 24fH. Clavier, K. Le Jeune, I. de Riggi, A. Tenaglia, G. Buono, Org. Lett. 2011, 13, 308–311.
- 25CCDC 1922409 (13) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
- 26A. Tamoto, N. Aratani, H. Yamada, Chem. Eur. J. 2017, 23, 16388–16392.
- 27G.-W. Zhang, Q. Shi, C.-F. Chen, Chem. Commun. 2017, 53, 2582–2585.
- 28M. E. Volpin, D. N. Kursanov, V. G. Dulova, Tetrahedron 1960, 8, 33–37.
- 29M. Albeck, T. Tamari, M. Sprecher, J. Org. Chem. 1983, 48, 2276–2278.
- 30E. Follet, G. Berionni, P. Mayer, H. Mayr, J. Org. Chem. 2015, 80, 8643–8656.
- 31M. Barbero, R. Buscaino, S. Cadamuro, S. Dughera, A. Gualandi, D. Marabello, P. G. Cozzi, J. Org. Chem. 2015, 80, 4791–4796.
- 32H. Mayr, B. Kempf, A. R. Ofial, Acc. Chem. Res. 2003, 36, 66–77.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.