Unconventional Route to Oxygen-Vacancy-Enabled Highly Efficient Electron Extraction and Transport in Perovskite Solar Cells
Dr. Bing Wang
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332 USA
Eco-materials and Renewable Energy Research Center, National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorDr. Meng Zhang
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332 USA
Search for more papers by this authorDr. Xun Cui
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332 USA
Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, 430074 China
Search for more papers by this authorZewei Wang
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332 USA
Search for more papers by this authorMatthew Rager
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332 USA
Search for more papers by this authorCorresponding Author
Prof. Yingkui Yang
Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, 430074 China
Search for more papers by this authorProf. Zhigang Zou
Eco-materials and Renewable Energy Research Center, National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Zhong Lin Wang
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332 USA
Search for more papers by this authorCorresponding Author
Prof. Zhiqun Lin
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332 USA
Search for more papers by this authorDr. Bing Wang
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332 USA
Eco-materials and Renewable Energy Research Center, National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorDr. Meng Zhang
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332 USA
Search for more papers by this authorDr. Xun Cui
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332 USA
Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, 430074 China
Search for more papers by this authorZewei Wang
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332 USA
Search for more papers by this authorMatthew Rager
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332 USA
Search for more papers by this authorCorresponding Author
Prof. Yingkui Yang
Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, 430074 China
Search for more papers by this authorProf. Zhigang Zou
Eco-materials and Renewable Energy Research Center, National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Zhong Lin Wang
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332 USA
Search for more papers by this authorCorresponding Author
Prof. Zhiqun Lin
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332 USA
Search for more papers by this authorAbstract
The ability to effectively transfer photoexcited electrons and holes is an important endeavor toward achieving high-efficiency solar energy conversion. Now, a simple yet robust acid-treatment strategy is used to judiciously create an amorphous TiO2 buffer layer intimately situated on the anatase TiO2 surface as an electron-transport layer (ETL) for efficient electron transport. The facile acid treatment is capable of weakening the bonding of zigzag octahedral chains in anatase TiO2, thereby shortening staggered octahedron chains to form an amorphous buffer layer on the anatase TiO2 surface. Such amorphous TiO2-coated ETL possesses an increased electron density owing to the presence of oxygen vacancies, leading to efficient electron transfer from perovskite to TiO2. Compared to pristine TiO2-based devices, the perovskite solar cells (PSCs) with acid-treated TiO2 ETL exhibit an enhanced short-circuit current and power conversion efficiency.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201910471-sup-0001-misc_information.pdf2.3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. He, D. J. Zheng, M. Y. Wang, C. J. Lin, Z. Q. Lin, J. Mater. Chem. A 2014, 2, 5994–6003;
- 1bL. J. Zuo, Z. W. Gu, T. Ye, W. F. Fu, G. Wu, H. Y. Li, H. Z. Chen, J. Am. Chem. Soc. 2015, 137, 2674–2679.
- 2
- 2aP. R. Cheng, Z. Xu, J. B. Li, Y. C. Liu, Y. Y. Fan, L. Y. Yu, D. M. Smilgies, C. Muller, K. Zhao, S. F. Liu, ACS Energy Lett. 2018, 3, 1975–1982;
- 2bNational Renewable Energy Laboratory (NREL), 2019.
- 3H. P. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. R. Hong, J. B. You, Y. S. Liu, Y. Yang, Science 2014, 345, 542–546.
- 4F. Giordano, A. Abate, J. P. C. Baena, M. Saliba, T. Matsui, S. H. Im, S. M. Zakeeruddin, M. K. Nazeeruddin, A. Hagfeldt, M. Graetzel, Nat. Commun. 2016, 7, 10379.
- 5
- 5aX. P. Liu, T. L. Bu, J. Li, J. He, T. H. Li, J. Zhang, W. N. Li, Z. L. Ku, Y. Peng, F. Z. Huang, Y. B. Cheng, J. Zhong, Nano Energy 2018, 44, 34–42;
- 5bL. B. Qiu, L. K. Ono, Y. Jiang, M. R. Leyden, S. R. Raga, S. H. Wang, Y. B. Qi, J. Phys. Chem. B 2018, 122, 511–520.
- 6
- 6aD. M. Hausmann, R. G. Gordon, J. Cryst. Growth 2003, 249, 251–261;
- 6bT. S. Sherkar, C. Momblona, L. Gil-Escrig, J. Avila, M. Sessolo, H. J. Bolink, L. J. A. Koster, ACS Energy Lett. 2017, 2, 1214–1222.
- 7Y. R. Hou, J. Y. Yang, Q. H. Jiang, W. X. Li, Z. W. Zhou, X. Li, S. Q. Zhou, Sol. Energy Mater. Sol. Cells 2016, 155, 101–107.
- 8E. Verlage, S. Hu, R. Liu, R. J. R. Jones, K. Sun, C. X. Xiang, N. S. Lewis, H. A. Atwater, Energy Environ. Sci. 2015, 8, 3166–3172.
- 9
- 9aS. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, N. S. Lewis, Science 2014, 344, 1005–1009;
- 9bM. R. Shaner, S. Hu, K. Sun, N. S. Lewis, Energy Environ. Sci. 2015, 8, 203–207;
- 9cM. J. Torralvo, J. Sanz, I. Sobrados, J. Soria, C. Garlisi, G. Palmisano, S. Cetinkaya, S. Yurdakal, V. Augugliaro, Appl. Catal. B 2018, 221, 140–151;
- 9dJ. P. Yang, Y. X. Wang, W. Li, L. J. Wang, Y. C. Fan, W. Jiang, W. Luo, Y. Wang, B. Kong, C. Selomulya, H. K. Liu, S. X. Dou, D. Y. Zhao, Adv. Mater. 2017, 29, 1700523;
- 9eZ. W. Ren, J. Wang, Z. X. Pan, K. Zhao, H. Zhang, Y. Li, Y. X. Zhao, I. Mora-Sero, J. Bisquert, X. H. Zhong, Chem. Mater. 2015, 27, 8398–8405.
- 10X. H. Lu, G. M. Wang, T. Zhai, M. H. Yu, J. Y. Gan, Y. X. Tong, Y. Li, Nano Lett. 2012, 12, 1690–1696.
- 11G. M. Wang, Y. C. Ling, Y. Li, Nanoscale 2012, 4, 6682–6691.
- 12V. Petkov, G. Holzhuter, U. Troge, T. Gerber, B. Himmel, J. Non-Cryst. Solids 1998, 231, 17–30.
- 13J. Soria, J. Sanz, M. J. Torralvo, I. Sobrados, C. Garlisi, G. Palmisano, S. Cetinkaya, S. Yurdakal, V. Augugliaro, Appl. Catal. B 2017, 210, 306–319.
- 14
- 14aQ. X. Wen, J. Yu, X. Y. Sun, J. Zhuang, Q. G. He, X. You, J. Guo, L. Y. Tao, New J. Chem. 2016, 40, 3233–3237;
- 14bT. Watson, C. Charbonneau, D. Bryant, D. Worsley, Int. J. Photoenergy 2012, 2012, 637839.
- 15J. W. Zhang, L. L. Zhang, J. W. Zhang, Z. J. Zhang, Z. S. Wu, J. Alloys Compd. 2015, 642, 28–33.
- 16A. Klasen, P. Baumli, Q. Sheng, E. Johannes, S. A. Bretschneider, I. M. Hermes, V. W. Bergmann, C. Gort, A. Axt, S. A. L. Weber, H. Kim, H. J. Butt, W. Tremel, R. Berger, J. Phys. Chem. C 2019, 123, 13458–13466.
- 17X. H. Wang, L. Lu, B. Wang, Z. Xu, Z. Y. Xin, S. C. Yan, Z. R. Geng, Z. G. Zou, Adv. Funct. Mater. 2018, 28, 1804191.
- 18M. A. Rahman, J. P. Thomas, K. T. Leung, Adv. Energy Mater. 2018, 8, 1701234.
- 19M. V. Ganduglia-Pirovano, A. Hofmann, J. Sauer, Surf. Sci. Rep. 2007, 62, 219–270.
- 20B. Wang, X. H. Wang, L. Lu, C. G. Zhou, Z. Y. Xi, J. J. Wang, X. K. Ke, G. D. Sheng, S. C. Yan, Z. G. Zou, ACS Catal. 2018, 8, 516–525.
- 21Y. Wang, C. X. Feng, M. Zhang, J. J. Yang, Z. J. Zhang, Appl. Catal. B 2010, 100, 84–90.
- 22X. Y. Xu, C. X. Xu, J. Dai, J. G. Hu, F. J. Li, S. Zhang, J. Phys. Chem. C 2012, 116, 8813–8818.
- 23
- 23aY. Yang, Y. C. Ling, G. M. Wang, T. Y. Liu, F. X. Wang, T. Zhai, Y. X. Tong, Y. Li, Nano Lett. 2015, 15, 7051–7057;
- 23bJ. J. Zhang, X. X. Chang, C. C. Li, A. Li, S. S. Liu, T. Wang, J. L. Gong, J. Mater. Chem. A 2018, 6, 3350–3354;
- 23cF. Zhang, W. Ma, H. Z. Guo, Y. C. Zhao, X. Y. Shan, K. J. Jin, H. Tian, Q. Zhao, D. P. Yu, X. H. Lu, G. Lu, S. Meng, Chem. Mater. 2016, 28, 802–812.
- 24
- 24aZ. Z. Wang, J. Fang, Y. Mi, X. Y. Zhu, H. Ren, X. F. Liu, Y. Yan, Appl. Surf. Sci. 2018, 436, 596–602;
- 24bU. Dasgupta, S. Chatterjee, A. J. Pal, Sol. Energy Mater. Sol. Cells 2017, 172, 353–360.
- 25D. N. Pei, L. Gong, A. Y. Zhang, X. Zhang, J. J. Chen, Y. Mu, H. Q. Yu, Nat. Commun. 2015, 6, 8696.
- 26H. Elbohy, K. M. Reza, S. Abdulkarim, Q. Q. Qiao, Sustainable Energy Fuels 2018, 2, 403–412.
- 27A. Janotti, J. B. Varley, P. Rinke, N. Umezawa, G. Kresse, C. G. Van de Walle, Phys. Rev. B 2010, 81, 085212.
- 28G. M. Wang, H. Y. Wang, Y. C. Ling, Y. C. Tang, X. Y. Yang, R. C. Fitzmorris, C. C. Wang, J. Z. Zhang, Y. Li, Nano Lett. 2011, 11, 3026–3033.
- 29H. R. Tan, A. Jain, O. Voznyy, X. Z. Lan, F. P. G. de Arquer, J. Z. Fan, R. Quintero-Bermudez, M. J. Yuan, B. Zhang, Y. C. Zhao, F. J. Fan, P. C. Li, L. N. Quan, Y. B. Zhao, Z. H. Lu, Z. Y. Yang, S. Hoogland, E. H. Sargent, Science 2017, 355, 722–726.
- 30E. Mosconi, E. Ronca, F. De Angelis, J. Phys. Chem. Lett. 2014, 5, 2619–2625.
- 31L. A. Barrie, J. W. Bottenheim, R. C. Schnell, P. J. Crutzen, R. A. Rasmussen, Nature 1988, 334, 138–141.
- 32X. T. Meng, X. Cui, M. Rager, S. G. Zhang, Z. W. Wang, J. Yu, Y. W. Harn, Z. T. Kang, B. K. Wagner, Y. Liu, C. Yu, J. S. Qiu, Z. Q. Lin, Nano Energy 2018, 52, 123–133.
- 33U. Poudyal, F. S. Maloney, K. Sapkota, W. Y. Wang, Nanotechnology 2017, 28, 415401.
- 34W. J. Ke, G. J. Fang, Q. Liu, L. B. Xiong, P. L. Qin, H. Tao, J. Wang, H. W. Lei, B. R. Li, J. W. Wan, G. Yang, Y. F. Yan, J. Am. Chem. Soc. 2015, 137, 6730–6733.
- 35S. C. Hao, J. H. Wu, L. Q. Fan, Y. F. Huang, H. M. Lin, Y. L. Wei, Sol. Energy 2004, 76, 745–750.
- 36M. Saliba, T. Matsui, J. Y. Seo, K. Domanski, J. P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Gratzel, Energy Environ. Sci. 2016, 9, 1989–1997.
- 37S. Wang, W. Yuan, Y. S. Meng, ACS Appl. Mater. Interfaces 2015, 7, 24791–24798.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.