Fluorescent Isoindole Crosslink (FlICk) Chemistry: A Rapid, User-friendly Stapling Reaction
Mihajlo Todorovic
Chemistry Department, UBC, 2036 Main Mall, Vancouver, B.C., V6T1Z1 Canada
Search for more papers by this authorKaterina D. Schwab
Chemistry Department, UBC, 2036 Main Mall, Vancouver, B.C., V6T1Z1 Canada
Search for more papers by this authorDr. Jutta Zeisler
B.C. Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3 Canada
Search for more papers by this authorDr. Chengcheng Zhang
B.C. Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3 Canada
Search for more papers by this authorProf. Dr. Francois Bénard
B.C. Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3 Canada
Search for more papers by this authorCorresponding Author
Prof. Dr. David M. Perrin
Chemistry Department, UBC, 2036 Main Mall, Vancouver, B.C., V6T1Z1 Canada
Search for more papers by this authorMihajlo Todorovic
Chemistry Department, UBC, 2036 Main Mall, Vancouver, B.C., V6T1Z1 Canada
Search for more papers by this authorKaterina D. Schwab
Chemistry Department, UBC, 2036 Main Mall, Vancouver, B.C., V6T1Z1 Canada
Search for more papers by this authorDr. Jutta Zeisler
B.C. Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3 Canada
Search for more papers by this authorDr. Chengcheng Zhang
B.C. Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3 Canada
Search for more papers by this authorProf. Dr. Francois Bénard
B.C. Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3 Canada
Search for more papers by this authorCorresponding Author
Prof. Dr. David M. Perrin
Chemistry Department, UBC, 2036 Main Mall, Vancouver, B.C., V6T1Z1 Canada
Search for more papers by this authorAbstract
The stabilization of peptide secondary structure via stapling is a ubiquitous goal for creating new probes, imaging agents, and drugs. Inspired by indole-derived crosslinks found in natural peptide toxins, we employed ortho-phthalaldehydes to create isoindole staples, thus transforming inactive linear and monocyclic precursors into bioactive monocyclic and bicyclic products. Mild, metal-free conditions give an array of macrocyclic α-melanocyte-stimulating hormone (α-MSH) derivatives, of which several isoindole-stapled α-MSH analogues (Ki≈1 nm) are found to be as potent as α-MSH. Analogously, late-stage intra-annular isoindole stapling furnished a bicyclic peptide mimic of α-amanitin that is cytotoxic to CHO cells (IC50=70 μm). Given its user-friendliness, we have termed this approach FlICk (fluorescent isoindole crosslink) chemistry.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201906514-sup-0001-misc_information.pdf11.7 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aD. J. Craik, D. P. Fairlie, S. Liras, D. Price, Chem. Biol. Drug Des. 2013, 81, 136–147;
- 1bT. A. F. Cardote, A. Ciulli, ChemMedChem 2016, 11, 787–794.
- 2J. M. Willey, W. A. van der Donk, Annu. Rev. Microbiol. 2007, 61, 477–501.
- 3T. Wieland, H. Faulstich, CRC Crit. Rev. Biochem. 1978, 5, 185–260.
- 4B. Ma, B. Banerjee, D. N. Litvinov, L. W. He, S. L. Castle, J. Am. Chem. Soc. 2010, 132, 1159–1171.
- 5
- 5aL. M. De Lyon Rodriguez, E. T. Williams, M. A. Brimble, Chem. Eur. J. 2018, 24, 17869–17880;
- 5bT. Cupido, J. Tulla-Puche, J. Spengler, F. Albericio, Curr. Opin. Drug Discov. Devel. 2007, 10, 768–783.
- 6
- 6aJ. Gavenonis, B. A. Sheneman, T. R. Siegert, M. R. Eshelman, J. A. Kritzer, Nat. Chem. Biol. 2014, 10, 716–722;
- 6bD. F. Veber, F. W. Holly, W. J. Paleveda, R. F. Nutt, S. J. Bergstrand, M. Torchiana, M. S. Glitzer, R. Saperstein, R. Hirschmann, Proc. Natl. Acad. Sci. USA 1978, 75, 2636–2640;
- 6cT. A. Hill, N. E. Shepherd, F. Diness, D. P. Fairlie, Angew. Chem. Int. Ed. 2014, 53, 13020–13041; Angew. Chem. 2014, 126, 13234–13257;
- 6dP. Wójcik, L. Berlicki, Bioorg. Med. Chem. Lett. 2016, 26, 707–713;
- 6eC. A. Rhodes, D. H. Pei, Chem. Eur. J. 2017, 23, 12690–12703;
- 6fJ. E. Bock, J. Gavenonis, J. A. Kritzer, ACS Chem. Biol. 2013, 8, 488–499;
- 6gY. H. Lau, P. De Andrade, Y. T. Wu, D. R. Spring, Chem. Soc. Rev. 2015, 44, 91–102;
- 6hR. Derda, M. R. Jafari, Protein Pept. Lett. 2018, 25, 1051–1075.
- 7D. F. Veber, et al., Nature 1981, 292, 55–58.
- 8P. A. Cistrone, A. P. Silvestri, J. C. J. Hintzen, P. E. Dawson, ChemBioChem 2018, 19, 1031–1035.
- 9
- 9aM. Meldal, C. W. Tornoe, Chem. Rev. 2008, 108, 2952–3015;
- 9bY. Angell, K. Burgess, J. Org. Chem. 2005, 70, 9595–9598;
- 9cJ. M. Beierle, W. S. Horne, J. H. van Maarseveen, B. Waser, J. C. Reubi, M. R. Ghadiri, Angew. Chem. Int. Ed. 2009, 48, 4725–4729; Angew. Chem. 2009, 121, 4819–4823;
- 9dS. Ingale, P. E. Dawson, Org. Lett. 2011, 13, 2822–2825.
- 10J. Q. Zhang, M. Mulumba, H. Ong, W. D. Lubell, Angew. Chem. Int. Ed. 2017, 56, 6284–6288; Angew. Chem. 2017, 129, 6381–6385.
- 11
- 11aH. E. Blackwell, R. H. Grubbs, Angew. Chem. Int. Ed. 1998, 37, 3281–3284;
10.1002/(SICI)1521-3773(19981217)37:23<3281::AID-ANIE3281>3.0.CO;2-V CAS PubMed Web of Science® Google ScholarAngew. Chem. 1998, 110, 3469–3472;10.1002/(SICI)1521-3757(19981204)110:23<3469::AID-ANGE3469>3.0.CO;2-A Web of Science® Google Scholar
- 11bG. J. Hilinski, Y. W. Kim, J. Hong, P. S. Kutchukian, C. M. Crenshaw, S. S. Berkovitch, A. Chang, S. Ham, G. L. Verdine, J. Am. Chem. Soc. 2014, 136, 12314–12322;
- 11cM. Sousbie, M. Vivancos, R. L. Brouillette, E. Besserer-Offroy, J. M. Longpre, R. Leduc, P. Sarret, E. Marsault, J. Med. Chem. 2018, 61, 7103–7115.
- 12E. V. Vinogradova, C. Zhang, A. M. Spokoyny, B. L. Pentelute, S. L. Buchwald, Nature 2015, 526, 687–691.
- 13H. G. Lee, G. Lautrette, B. L. Pentelute, S. L. Buchwald, Angew. Chem. Int. Ed. 2017, 56, 3177–3181; Angew. Chem. 2017, 129, 3225–3229.
- 14
- 14aF. M. Brunel, P. E. Dawson, Chem. Commun. 2005, 2552–2554;
- 14bA. M. Spokoyny, Y. K. Zou, J. J. Ling, H. T. Yu, Y. S. Lin, B. L. Pentelute, J. Am. Chem. Soc. 2013, 135, 5946–5949;
- 14cN. Assem, D. J. Ferreira, D. W. Wolan, P. E. Dawson, Angew. Chem. Int. Ed. 2015, 54, 8665–8668; Angew. Chem. 2015, 127, 8789–8792;
- 14dA. A. Aimetti, R. K. Shoemaker, C. C. Lin, K. S. Anseth, Chem. Commun. 2010, 46, 4061–4063;
- 14eB. C. Zhao, Q. Z. Zhang, Z. G. Li, J. Pept. Sci. 2016, 22, 540–544;
- 14fY. Tian, et al., Chem. Sci. 2016, 7, 3325–3330;
- 14gY. X. Wang, D. H. C. Chou, Angew. Chem. Int. Ed. 2015, 54, 10931–10934; Angew. Chem. 2015, 127, 11081–11084;
- 14hY. Goto, A. Ohta, Y. Sako, Y. Yamagishi, H. Murakami, H. Suga, ACS Chem. Biol. 2008, 3, 120–129;
- 14iL. Mendive-Tapia, S. Preciado, J. Garcia, R. Ramon, N. Kielland, F. Albericio, R. Lavilla, Nat. Commun. 2015, 6, 9;
- 14jS. P. Brown, A. B. Smith, J. Am. Chem. Soc. 2015, 137, 4034–4037;
- 14kC. Zhang, E. V. Vinogradova, A. M. Spokoyny, S. L. Buchwald, B. L. Pentelute, Angew. Chem. Int. Ed. 2019, 58, 4810–4839; Angew. Chem. 2019, 131, 4860–4892;
- 14lY. B. Feng, K. Burgess, Chem. Eur. J. 1999, 5, 3261–3272.
10.1002/(SICI)1521-3765(19991105)5:11<3261::AID-CHEM3261>3.0.CO;2-H CAS Web of Science® Google Scholar
- 15J. R. Frost, C. C. G. Scully, A. K. Yudin, Nat. Chem. 2016, 8, 1105–1111.
- 16M. G. Ricardo, D. Llanes, L. A. Wessjohann, D. G. Rivera, Angew. Chem. Int. Ed. 2019, 58, 2700–2704; Angew. Chem. 2019, 131, 2726–2730.
- 17
- 17aM. Roth, Anal. Chem. 1971, 43, 880–882;
- 17bJ. R. Benson, P. E. Hare, Proc. Natl. Acad. Sci. USA 1975, 72, 619–622;
- 17cK. S. Lee, D. G. Drescher, Int. J. Biochem. 1978, 9, 457–467;
- 17dY. Ishida, T. Fujita, K. Asai, J. Chromatogr. 1981, 204, 143–148;
- 17eR. N. Puri, R. Roskoski, Anal. Biochem. 1988, 173, 26–32.
- 18
- 18aG. Matteucci, V. Lanzara, C. Ferrari, S. Hanau, C. M. Bergamini, Biol. Chem. 1998, 379, 921–924;
- 18bR. N. Puri, D. Bhatnagar, R. Roskoski, Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1988, 957, 34–46.
- 19
- 19aS. S. Simons, E. B. Thompson, D. F. Johnson, Biochemistry 1979, 18, 4915–4922;
- 19bP. S. Portoghese, R. El Kouhen, P. Y. Law, H. H. Loh, B. Le Bourdonnec, Farmaco 2001, 56, 191–196;
- 19cD. J. Maly, J. A. Allen, K. M. Shokat, J. Am. Chem. Soc. 2004, 126, 9160–9161;
- 19dA. V. Statsuk, D. J. Maly, M. A. Seeliger, M. A. Fabian, W. H. Biggs, D. J. Lockhart, P. P. Zarrinkar, J. Kuriyan, K. M. Shokat, J. Am. Chem. Soc. 2008, 130, 17568–17574.
- 20P. D. Raposinho, J. D. G. Correia, M. C. Oliveira, I. Santos, Biopolymers 2010, 94, 820–829.
- 21C. Zhang, Z. Zhang, K.-S. Lin, J. Lau, J. Zeisler, N. Colpo, D. M. Perrin, F. Benard, Mol. Pharm. 2018, 15, 2116–2122.
- 22G. Moldenhauer, A. V. Salnikov, S. Luttgau, I. Herr, J. Anderl, H. Faulstich, J. Natl. Cancer Inst. 2012, 104, 622–634.
- 23H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. Int. Ed. 2001, 40, 2004–2021;
10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5 CAS PubMed Web of Science® Google ScholarAngew. Chem. 2001, 113, 2056–2075.
- 24J. R. Holder, C. Haskell-Luevano, Med. Res. Rev. 2004, 24, 325–356.
- 25F. Al-Obeidi, A. M. D. Castrucci, M. E. Hadley, V. J. Hruby, J. Med. Chem. 1989, 32, 2555–2561.
- 26
- 26aR. T. Dorr, R. Lines, N. Levine, C. Brooks, L. Xiang, V. J. Hruby, M. E. Hadley, Life Sci. 1996, 58, 1777–1784;
- 26bH. Wessells, K. Fuciarelli, J. Hansen, M. E. Hadley, V. J. Hruby, R. Dorr, N. Levine, J. Urol. 1998, 160, 389–393.
- 27
- 27aA. V. Mayorov, S. Y. Han, M. Y. Cai, M. R. Hammer, D. Trivedi, V. J. Hruby, Chem. Biol. Drug Des. 2006, 67, 329–335;
- 27bM. D. Ericson, K. T. Freeman, S. M. Schnell, C. Haskell-Luevano, J. Med. Chem. 2017, 60, 805–813.
- 28J. F. Stobaugh, A. J. Repta, L. A. Sternson, J. Org. Chem. 1984, 49, 4306–4309.
- 29
- 29aR. F. Chen, C. Scott, E. Trepman, Biochim. Biophys. Acta Protein Struct. 1979, 576, 440–455;
- 29bM. J. M. Hernández, R. M. V. Camañas, M. C. G. Alvarez-Coque, Microchem. J. 1990, 42, 288–293.
- 30
- 30aH. W. Ai, N. C. Shaner, Z. H. Cheng, R. Y. Tsien, R. E. Campbell, Biochemistry 2007, 46, 5904–5910;
- 30bO. M. Subach, I. S. Gundorov, M. Yoshimura, F. V. Subach, J. H. Zhang, D. Gruenwald, E. A. Souslova, D. M. Chudakov, V. V. Verkhusha, Chem. Biol. 2008, 15, 1116–1124.
- 31D. A. Bushnell, P. Cramer, R. D. Kornberg, Proc. Natl. Acad. Sci. USA 2002, 99, 1218–1222.
- 32
- 32aE. C. Kostansek, W. N. Lipscomb, R. R. Yocum, W. E. Thiessen, Biochemistry 1978, 17, 3790–3795;
- 32bA. E. Tonelli, D. J. Patel, T. Wieland, H. Faulstich, Biopolymers 1978, 17, 1973–1986.
- 33K. Matinkhoo, A. Pryyma, M. Todorovic, B. O. Patrick, D. M. Perrin, J. Am. Chem. Soc. 2018, 140, 6513–6517.
- 34W. Schmitt, G. Zanotti, T. Wieland, H. Kessler, J. Am. Chem. Soc. 1996, 118, 4380–4387.
- 35H. Faulstich, H. Trischmann, T. Wieland, E. Wulf, Biochemistry 1981, 20, 6498–6504.
- 36S. R. Tala, A. Singh, C. J. Lensing, S. M. Schnell, K. T. Freeman, J. R. Rocca, C. Haskell-Luevano, ACS Chem. Neurosci. 2018, 9, 1001–1013.
- 37M. C. Martínez-Ceron, S. L. Giudicessi, S. L. Saavedra, J. M. Gurevich-Messina, R. Erra-Balsells, F. Albericio, O. Cascone, S. A. Camperi, Curr. Pharm. Biotechnol. 2016, 17, 449–457.
- 38
- 38aC. Heinis, T. Rutherford, S. Freund, G. Winter, Nat. Chem. Biol. 2009, 5, 502–507;
- 38bS. Kalhor-Monfared, M. R. Jafari, J. T. Patterson, P. I. Kitov, J. J. Dwyer, J. M. Nuss, R. Derda, Chem. Sci. 2016, 7, 3785–3790.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.