Cyclobis(7,8-(para-quinodimethane)-4,4′-triphenylamine) and Its Cationic Species Showing Annulene-Like Global (Anti)Aromaticity
Dr. Shaoqiang Dong
Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore, Singapore
Search for more papers by this authorDr. Tullimilli Y. Gopalakrishna
Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore, Singapore
Search for more papers by this authorYi Han
Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore, Singapore
Search for more papers by this authorCorresponding Author
Prof. Chunyan Chi
Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore, Singapore
Search for more papers by this authorDr. Shaoqiang Dong
Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore, Singapore
Search for more papers by this authorDr. Tullimilli Y. Gopalakrishna
Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore, Singapore
Search for more papers by this authorYi Han
Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore, Singapore
Search for more papers by this authorCorresponding Author
Prof. Chunyan Chi
Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore, Singapore
Search for more papers by this authorAbstract
π-Conjugated macrocycles containing all-benzenoid rings usually show local aromaticity, but reported herein is the macrocycle CBQT, containing alternating para-quinodimethane and triphenylamine units displaying annulene-like anti-aromaticity at low temperatures as a result of structural rigidity and participation of the bridging nitrogen atoms in π-conjugation. It was easily synthesized by intermolecular Friedel–Crafts alkylation followed by oxidative dehydrogenation. X-ray crystallographic structures of CBQT, as well as those of its dication, trication, and tetracation were obtained. The dication and tetracation exhibited global aromaticity and antiaromaticity, respectively, as confirmed by NMR measurements and theoretical calculations. Both the dication and tetracation possess open-shell singlet ground states, with a small singlet–triplet gap.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201905763-sup-0001-misc_information.pdf3.7 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aF. Sondheimer, R. Wolovsky, J. Am. Chem. Soc. 1962, 84, 260;
- 1bE. L. Spitler, C. A. Johnson II, M. M. Haley, Chem. Rev. 2006, 106, 5344.
- 2
- 2aE. Hückel, Z. Phys. 1931, 70, 204;
- 2bR. Breslow, J. Brown, J. J. Gajewski, J. Am. Chem. Soc. 1967, 89, 4383.
- 3E. Heilbronner, Tetrahedron Lett. 1964, 5, 1923.
- 4
- 4aJ. Shin, K. S. Kim, M. Yoon, J. M. Lim, Z. S. Yoon, A. Osuka, D. Kim, Chem. Soc. Rev. 2010, 39, 2751;
- 4bT. Tanaka, A. Osuka, Chem. Rev. 2017, 117, 2584;
- 4cM. D. Peeks, T. D. W. Claridge, H. L. Anderson, Nature 2017, 541, 200.
- 5
- 5aJ. S. Reddy, S. Mandal, V. G. Anand, Org. Lett. 2006, 8, 5541;
- 5bJ. S. Reddy, V. G. Anand, J. Am. Chem. Soc. 2008, 130, 3718;
- 5cT. Y. Gopalakrishna, J. S. Reddy, V. G. Anand, Angew. Chem. Int. Ed. 2013, 52, 1763; Angew. Chem. 2013, 125, 1807;
- 5dT. Y. Gopalakrishna, V. G. Anand, Angew. Chem. Int. Ed. 2014, 53, 6678; Angew. Chem. 2014, 126, 6796;
- 5eB. K. Reddy, A. Basavarajappa, M. D. Ambhore, V. G. Anand, Chem. Rev. 2017, 117, 3420.
- 6
- 6aM. Stépień, L. Latos-Grażyński, J. Am. Chem. Soc. 2002, 124, 3838;
- 6bM. Stépień, L. Latos-Grażyński, N. Sprutta, P. Chwalisz, L. Szterenberg, Angew. Chem. Int. Ed. 2007, 46, 7869; Angew. Chem. 2007, 119, 8015;
- 6cJ. Sreedhar Reddy, V. G. Anand, Chem. Commun. 2008, 1326.
- 7W. Huber, K. Müllen, O. Wennerström, Angew. Chem. Int. Ed. Engl. 1980, 19, 624; Angew. Chem. 1980, 92, 636.
- 8
- 8aH. Omachi, Y. Segawa, K. Itami, Acc. Chem. Res. 2012, 45, 1378;
- 8bE. Simon, S. E. Lewis, Chem. Soc. Rev. 2015, 44, 2221;
- 8cM. R. Golder, R. Jasti, Acc. Chem. Res. 2015, 48, 557;
- 8dY. Segawa, A. Yagi, K. Matsui, K. Itami, Angew. Chem. Int. Ed. 2016, 55, 5136; Angew. Chem. 2016, 128, 5222.
- 9
- 9aV. A. Sergeev, V. I. Nedel'kin, O. B. Andrianova, Vysokomol. Soedin. Ser. B 1987, 29, 357;
- 9bV. A. Sergeev, V. I. Nedel'kin, A. V. Astankov, A. V. Nikiforov, E. M. Alov, Y. A. Moskvichev, Izv. Akad. Nauk SSSR Ser. Khim. Engl. Transl. 1990, 763;
- 9cD. Takeuchi, I. Asano, K. Osakada, J. Org. Chem. 2006, 71, 8614;
- 9dA. Ito, Y. Yokoyama, R. Aihara, K. Fukui, S. Eguchi, K. Shizu, T. Sato, K. Tanaka, Angew. Chem. Int. Ed. 2010, 49, 8205; Angew. Chem. 2010, 122, 8381;
- 9eD. Sakamaki, A. Ito, Y. Tsutsui, S. Seki, J. Org. Chem. 2017, 82, 13348;
- 9fP. Chen, R. A. Lalancette, F. Jäkle, Angew. Chem. Int. Ed. 2012, 51, 7994; Angew. Chem. 2012, 124, 8118.
- 10A. C. Hernandez-Perez, S. K. Collins, Angew. Chem. Int. Ed. 2013, 52, 12696; Angew. Chem. 2013, 125, 12928.
- 11M. Stépień, B. Szyszko, L. Latos-Grażyński, Org. Lett. 2009, 11, 3930.
- 12CCDC 1904322, 1904323, 1904324, and 1904325 [CBQT, CBQT2+(SbF6−)2, CBQT3+(SbCl6−)3, and CBQT4+(SbF6−)4] contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
- 13J. Thiele, H. Balhorn, Ber. Dtsch. Chem. Ges. 1904, 37, 1463.
- 14
- 14aD. Sakamaki, S. Yano, T. Kobashi, S. Seki, T. Kurahashi, S. Matsubara, A. Ito, K. Tanaka, Angew. Chem. Int. Ed. 2015, 54, 8267; Angew. Chem. 2015, 127, 8385;
- 14bY. Matsuta, D. Sakamaki, R. Kurata, A. Ito, S. Seki, Chem. Asian J. 2017, 12, 1889.
- 15
- 15aJ. Kruszewski, T. M. Krygowski, Tetrahedron Lett. 1972, 13, 3839;
- 15bT. M. Krygowski, J. Chem. Inf. Model. 1993, 33, 70.
- 16Q.-H. Guo, Z.-D. Fu, L. Zhao, M.-X. Wang, Angew. Chem. Int. Ed. 2014, 53, 13548; Angew. Chem. 2014, 126, 13766.
- 17S. Cho, Z. Seok Yoon, K. S. Kim, M.-C. Yoon, D.-G. Cho, J. L. Sessler, D. Kim, J. Phys. Chem. Lett. 2010, 1, 895.
- 18
- 18aM. Abe, Chem. Rev. 2013, 113, 7011;
- 18bZ. Sun, Z. Zeng, J. Wu, Acc. Chem. Res. 2014, 47, 2582;
- 18cZ. Zeng, X. Shi, C. Chi, J. T. L. Navarrete, J. Casado, J. Wu, Chem. Soc. Rev. 2015, 44, 6578;
- 18dT. Kubo, Chem. Lett. 2015, 44, 111;
- 18eT. Y. Gopalakrishna, W. Zeng, X. Lu, J. Wu, Chem. Commun. 2018, 54, 2186;
- 18fX. Shi, P. M. Burrezo, S. Lee, W. Zhang, B. Zheng, G. Dai, J. Chang, J. T. López Navarrete, K.-W. Huang, D. Kim, J. Casado, C. Chi, Chem. Sci. 2014, 5, 4490;
- 18gS. Dong, T. Y. Gopalakrishna, Y. Han, H. Phan, T. Tao, Y. Ni, G. Liu, C. Chi, J. Am. Chem. Soc. 2019, 141, 62–66.
- 19B. Bleaney, K. D. Bowers, Proc. R. Soc. London Ser. A 1952, 214, 451.
- 20D. Casanova, M. Head-Gordon, Phys. Chem. Chem. Phys. 2009, 11, 9779.
- 21D. Geuenich, K. Hess, F. Kohler, R. Herges, Chem. Rev. 2005, 105, 3758.
- 22P. v. R. Schleyer, C. Maerker, A. Dransfeld, H. J. Jiao, N. J. R. V. Hommes, J. Am. Chem. Soc. 1996, 118, 6317.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.