Dual Functionalization of α-Monoboryl Carbanions through Deoxygenative Enolization with Carboxylic Acids
Wei Sun
State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorDr. Lu Wang
State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Chungu Xia
State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Chao Liu
State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000 P. R. China
Search for more papers by this authorWei Sun
State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorDr. Lu Wang
State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Chungu Xia
State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Chao Liu
State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000 P. R. China
Search for more papers by this authorDedicated to Professor Xiyan Lu on the occasion of his 90th birthday
Abstract
A dual functionalization of 1,1-diborylalkanes through deoxygenative enolization with carboxylic acids was developed. 1,1-Diborylalkanes were activated by MeLi to generate α-monoboryl carbanions. In situ IR spectroscopy indicated an interaction between carboxylic acid and 1,1-diborylalkane before addition of the activation reagent. Release of the active α-monoboryl carbanion from the masked form was necessary for its reaction with carboxylate to afford enolate species. Electrophilic trapping of enolate species with various electrophiles achieved dual functionalization of 1,1-diborylalkanes to afford a variety of α-mono, di-, and tri-substituted ketones.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201801679-sup-0001-misc_information.pdf9.6 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aD. G. Hall, H. Lachance, Allylboration of carbonyl compounds, Wiley, Hoboken, NJ, 2012;
- 1bD. G. Hall, Boronic Acids: Preparation and Applications in Organic Synthesis Medicine and Materials, Vol. 1 and 2, 2nd ed., Wiley-VCH, Weinheim, 2011;
- 1cN. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457–2483;
- 1dE. C. Neeve, S. J. Geier, I. A. I. Mkhalid, S. A. Westcott, T. B. Marder, Chem. Rev. 2016, 116, 9091–9161.
- 2
- 2aH. Abu Ali, I. Goldberg, M. Srebnik, Organometallics 2001, 20, 3962–3965;
- 2bH. Abu Ali, I. Goldberg, D. Kaufmann, C. Burmeister, M. Srebnik, Organometallics 2002, 21, 1870–1876;
- 2cV. M. Dembitsky, H. Abu Ali, M. Srebnik, Appl. Organomet. Chem. 2003, 17, 327–345;
- 2dD. S. Matteson, R. J. Moody, J. Am. Chem. Soc. 1977, 99, 3196–3197;
- 2eL. Li, T. Gong, X. Lu, B. Xiao, Y. Fu, Nat. Commun. 2017, 8, 345;
- 2fK. Endo, M. Hirokami, T. Shibata, Synlett 2009, 1331–1335;
- 2gZ. Zuo, Z. Huang, Org. Chem. Front. 2016, 3, 434–438;
- 2hS. Lee, D. Li, J. Yun, Chem. Asian J. 2014, 9, 2440–2443;
- 2iH. Li, X. Shangguan, Z. Zhang, S. Huang, Y. Zhang, J. Wang, Org. Lett. 2014, 16, 448–451;
- 2jL. Wang, T. Zhang, W. Sun, Z. He, C. Xia, Y. Lan, C. Liu, J. Am. Chem. Soc. 2017, 139, 5257–5264;
- 2kT. C. Atack, S. P. Cook, J. Am. Chem. Soc. 2016, 138, 6139–6142;
- 2lJ. C. H. Lee, R. McDonald, D. G. Hall, Nat. Chem. 2011, 3, 894–899;
- 2mX. Feng, H. Jeon, J. Yun, Angew. Chem. Int. Ed. 2013, 52, 3989–3992; Angew. Chem. 2013, 125, 4081–4084;
- 2nW. N. Palmer, J. V. Obligacion, I. Pappas, P. J. Chirik, J. Am. Chem. Soc. 2016, 138, 766–769;
- 2oS. H. Cho, J. F. Hartwig, Chem. Sci. 2014, 5, 694–698;
- 2pW. N. Palmer, C. Zarate, P. J. Chirik, J. Am. Chem. Soc. 2017, 139, 2589–2592.
- 3R. Nallagonda, K. Padala, A. Masarwa, Org. Biomol. Chem. 2018, 16, 1050–1064.
- 4
- 4aD. S. Matteson, R. J. Moody, Organometallics 1982, 1, 20–28;
- 4bK. Endo, M. Hirokami, T. Shibata, J. Org. Chem. 2010, 75, 3469–3472;
- 4cE. Kohei, S. Akira, O. Takahiro, S. Takanori, Chem. Lett. 2011, 40, 1440–1442;
- 4dJ. R. Coombs, L. Zhang, J. P. Morken, Org. Lett. 2015, 17, 1708–1711;
- 4eE. La Cascia, A. B. Cuenca, E. Fernández, Chem. Eur. J. 2016, 22, 18737–18741;
- 4fT. C. Stephens, G. Pattison, Org. Lett. 2017, 19, 3498–3501.
- 5
- 5aJ. Park, S. Choi, Y. Lee, S. H. Cho, Org. Lett. 2017, 19, 4054–4057;
- 5bX. Liu, T. M. Deaton, F. Haeffner, J. P. Morken, Angew. Chem. Int. Ed. 2017, 56, 11485–11489; Angew. Chem. 2017, 129, 11643–11647;
- 5cJ. Kim, K. Ko, S. H. Cho, Angew. Chem. Int. Ed. 2017, 56, 11584–11588; Angew. Chem. 2017, 129, 11742–11746;
- 5dC. Hwang, W. Jo, S. H. Cho, Chem. Commun. 2017, 53, 7573–7576;
- 5eZ.-Q. Zhang, B. Zhang, X. Lu, J.-H. Liu, X.-Y. Lu, B. Xiao, Y. Fu, Org. Lett. 2016, 18, 952–955;
- 5fM. Zhan, R.-Z. Li, Z.-D. Mou, C.-G. Cao, J. Liu, Y.-W. Chen, D. Niu, ACS Catal. 2016, 6, 3381–3386;
- 5gB. Potter, E. K. Edelstein, J. P. Morken, Org. Lett. 2016, 18, 3286–3289;
- 5hJ. Park, Y. Lee, J. Kim, S. H. Cho, Org. Lett. 2016, 18, 1210–1213;
- 5iS. A. Murray, J. C. Green, S. B. Tailor, S. J. Meek, Angew. Chem. Int. Ed. 2016, 55, 9065–9069; Angew. Chem. 2016, 128, 9211–9215;
- 5jJ. Kim, S. Park, J. Park, S. H. Cho, Angew. Chem. Int. Ed. 2016, 55, 1498–1501; Angew. Chem. 2016, 128, 1520–1523;
- 5kW. Jo, J. Kim, S. Choi, S. H. Cho, Angew. Chem. Int. Ed. 2016, 55, 9690–9694; Angew. Chem. 2016, 128, 9842–9846;
- 5lS. Xu, X. Shangguan, H. Li, Y. Zhang, J. Wang, J. Org. Chem. 2015, 80, 7779–7784;
- 5mM. V. Joannou, B. S. Moyer, S. J. Meek, J. Am. Chem. Soc. 2015, 137, 6176–6179;
- 5nM. V. Joannou, B. S. Moyer, M. J. Goldfogel, S. J. Meek, Angew. Chem. Int. Ed. 2015, 54, 14141–14145; Angew. Chem. 2015, 127, 14347–14351;
- 5oZ.-Q. Zhang, C.-T. Yang, L.-J. Liang, B. Xiao, X. Lu, J.-H. Liu, Y.-Y. Sun, T. B. Marder, Y. Fu, Org. Lett. 2014, 16, 6342–6345;
- 5pC. Sun, B. Potter, J. P. Morken, J. Am. Chem. Soc. 2014, 136, 6534–6537;
- 5qB. Potter, A. A. Szymaniak, E. K. Edelstein, J. P. Morken, J. Am. Chem. Soc. 2014, 136, 17918–17921;
- 5rH. Li, Z. Zhang, X. Shangguan, S. Huang, J. Chen, Y. Zhang, J. Wang, Angew. Chem. Int. Ed. 2014, 53, 11921–11925; Angew. Chem. 2014, 126, 12115–12119;
- 5sK. Hong, X. Liu, J. P. Morken, J. Am. Chem. Soc. 2014, 136, 10581–10584;
- 5tK. Endo, T. Ohkubo, T. Ishioka, T. Shibata, J. Org. Chem. 2012, 77, 4826–4831;
- 5uK. Endo, T. Ohkubo, T. Shibata, Org. Lett. 2011, 13, 3368–3371;
- 5vK. Endo, T. Ohkubo, M. Hirokami, T. Shibata, J. Am. Chem. Soc. 2010, 132, 11033–11035.
- 6
- 6aD. S. Matteson, K. Arne, J. Am. Chem. Soc. 1978, 100, 1325–1326;
- 6bD. S. Matteson, D. Majumdar, Organometallics 1983, 2, 230–236;
- 6cA. Pelter, L. Warren, J. W. Wilson, Tetrahedron 1993, 49, 2888–3006;
- 6dT. Mukaiyama, M. Murakami, T. Oriyama, M. Yamaguchi, Chem. Lett. 1981, 10, 1193–1196.
- 7C. E. Iacono, T. C. Stephens, T. S. Rajan, G. Pattison, J. Am. Chem. Soc. 2018, 140, 2036–2040.
- 8H. C. Brown, S. P. Rhodes, J. Am. Chem. Soc. 1969, 91, 4306–4307.
- 9D. U. Nielsen, C. Lescot, T. M. Gøgsig, A. T. Lindhardt, T. Skrydstrup, Chem. Eur. J. 2013, 19, 17926–17938.
- 10M. Stol, D. J. M. Snelders, M. D. Godbole, R. W. A. Havenith, D. Haddleton, G. Clarkson, M. Lutz, A. L. Spek, G. P. M. van Klink, G. van Koten, Organometallics 2007, 26, 3985–3994.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.