Electrochemical Hydroxylation of Arenes Catalyzed by a Keggin Polyoxometalate with a Cobalt(IV) Heteroatom
Dr. Alexander M. Khenkin
Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100 Israel
These authors contributed equally to this work.
Search for more papers by this authorMiriam Somekh
Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100 Israel
These authors contributed equally to this work.
Search for more papers by this authorDr. Raanan Carmieli
Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100 Israel
Search for more papers by this authorCorresponding Author
Prof. Dr. Ronny Neumann
Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100 Israel
Search for more papers by this authorDr. Alexander M. Khenkin
Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100 Israel
These authors contributed equally to this work.
Search for more papers by this authorMiriam Somekh
Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100 Israel
These authors contributed equally to this work.
Search for more papers by this authorDr. Raanan Carmieli
Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100 Israel
Search for more papers by this authorCorresponding Author
Prof. Dr. Ronny Neumann
Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100 Israel
Search for more papers by this authorAbstract
The sustainable, selective direct hydroxylation of arenes, such as benzene to phenol, is an important research challenge. An electrocatalytic transformation using formic acid to oxidize benzene and its halogenated derivatives to selectively yield aryl formates, which are easily hydrolyzed by water to yield the corresponding phenols, is presented. The formylation reaction occurs on a Pt anode in the presence of [CoIIIW12O40]5− as a catalyst and lithium formate as an electrolyte via formation of a formyloxyl radical as the reactive species, which was trapped by a BMPO spin trap and identified by EPR. Hydrogen was formed at the Pt cathode. The sum transformation is ArH+H2O→ArOH+H2. Non-optimized reaction conditions showed a Faradaic efficiency of 75 % and selective formation of the mono-oxidized product in a 35 % yield. Decomposition of formic acid into CO2 and H2 is a side-reaction.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201801372-sup-0001-misc_information.pdf2.9 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. Ricci, D. Bianchi, R. Bortolo in Sustainable Industrial Processes (Eds.: ), Wiley-VCH, Weinheim, 2009, pp. 507–528;
10.1002/9783527629114.ch13 Google Scholar
- 1bM. K. Al Mesfer, M. Danisha, S. M. Ahmed, Russ. J. Appl. Chem. 2016, 89, 1869–1878;
- 1cS. Fukuzumi, K. Ohkubo, Asian J. Org. Chem. 2015, 4, 836–845;
- 1dT. Jiang, W. Wang, B. Han, New J. Chem. 2013, 37, 1654–1664.
- 2
- 2aT. Tsuji, A. A. Zaoputra, Y. Hitomi, K. Mieda, T. Ogura, Y. Shiota, K. Yoshizawa, H. Sato, M. Kodera, Angew. Chem. Int. Ed. 2017, 56, 7779–7782; Angew. Chem. 2017, 129, 7887–7890;
- 2bK. Hirose, K. Ohkubo, S. Fukuzumi, Chem. Eur. J. 2016, 22, 12904–12909;
- 2cM. Yamada, K. D. Karlin, S. Fukuzumi, Chem. Sci. 2016, 7, 2856–2863;
- 2dY. Morimoto, S. Bunno, N. Fujieda, H. Sugimoto, S. Itoh, J. Am. Chem. Soc. 2015, 137, 5867–5870;
- 2eM. Tani, T. Sakamoto, S. Mita, S. Sakaguchi, Y. Ishii, Angew. Chem. Int. Ed. 2005, 44, 2586–2588; Angew. Chem. 2005, 117, 2642–2644.
- 3S. S. Acharyya, S. Ghosh, R. Tiwari, C. Pendem, T. Sasaki, R. Bal, ACS Catal. 2015, 5, 2850–2858.
- 4
- 4aA. S. Larsen, K. Wang, M. A. Lockwood, G. L. Rice, T. Won, S. Lovell, M. Sadilek, F. Turecek, J. M. Mayer, J. Am. Chem. Soc. 2002, 124, 10112–10123;
- 4bT. Kojima, K. Nakayama, K. Ikemura, T. Ogura, S. Fukuzumi, J. Am. Chem. Soc. 2011, 133, 11692–11700;
- 4cJ. R. Bryant, T. Matsuo, J. M. Mayer, Inorg. Chem. 2004, 43, 1587–1592;
- 4dP. Afanasiev, A. B. Sorokin, Acc. Chem. Res. 2016, 49, 583–593.
- 5For recent some reviews on electrorganic transformations, see:
- 5aE. J. Horn, B. R. Rosen, P. S. Baran, ACS Cent. Sci. 2016, 2, 302–308;
- 5bM. Yan, Y. Kawamata, P. S. Baran, Chem. Rev. 2017, 117, 13230–13319;
- 5cR. Francke, R. D. Little, Chem. Soc. Rev. 2014, 43, 2492–2521;
- 5dJ.-I. Yoshida, K. Kataoka, R. Horcajada, A. Nagaki, Chem. Rev. 2008, 108, 2265–2299; J. B. Sperry, D. L. Wright, Chem. Soc. Rev. 2006, 35, 605–621.
- 6
- 6aL. Eberson, J. Am. Chem. Soc. 1967, 89, 4669–4677;
- 6bY. Kawamata, M. Yan, Z. Liu, D. H. Bao, J. Chen, J. T. Starr, P. S. Baran, J. Am. Chem. Soc. 2017, 139, 7448–7451;
- 6cQ. L. Yang, Y. Q. Li, C. Ma, P. Fang, X. J. Zhang, T. S. Mei, J. Am. Chem. Soc. 2017, 139, 3293–3298;
- 6dA. K. Vannucci, Z. Chen, J. J. Concepcion, T. J. Meyer, ACS Catal. 2012, 2, 716–719.
- 7T. Morofuji, A. Shimizu, J. Yoshida, Angew. Chem. Int. Ed. 2012, 51, 7259–7262; Angew. Chem. 2012, 124, 7371–7374.
- 8B. Lee, H. Naito, T. Hibino, Angew. Chem. Int. Ed. 2012, 51, 440–444; Angew. Chem. 2012, 124, 455–459.
- 9I. Yamanaka, T. Onizawa, S. Takenaka, K. Otsuka, Angew. Chem. Int. Ed. 2003, 42, 3653–3655; Angew. Chem. 2003, 115, 3781–3783.
- 10
- 10aB. B. Sarma, R. Carmieli, A. Collauto, I. Efremenko, J. M. L. Martin, R. Neumann, ACS Catal. 2016, 6, 6403–6407;
- 10bA. B. Ene, T. Archipov, E. Roduner, J. Phys. Chem. C 2011, 115, 3688–3694.
- 11
- 11aG. I. Panov, CATTECH 2000, 4, 18–31;
- 11bW. F. Hoelderich, Catal. Today 2000, 62, 115–130;
- 11cF. Kollmer, H. Hausmann, W. F. Holderich, J. Catal. 2004, 227, 398–407;
- 11dH. Xin, A. Koekkoek, Q. Yang, R. A. van Santen, C. Li, E. J. M. Hensen, Chem. Commun. 2009, 7590–7592;
- 11eB. E. R. Snyder, S. P. Vanelderen, M. L. Bols, S. D. Hallaert, L. H. Böttger, L. Ungur, K. Pierloot, R. A. Schoonheydt, B. F. Sels, E. I. Solomon, Nature 2016, 536, 317–321.
- 12L. Eberson, J. Am. Chem. Soc. 1983, 105, 3192–3199.
- 13P. Carloni, L. Eberson, Acta Chem. Scand. 1991, 45, 373–376.
- 14L. C. W. Baker, T. P. McCutcheon, J. Am. Chem. Soc. 1956, 78, 4503–4506.
- 15A. M. Khenkin, L. Weiner, Y. Wang, R. Neumann, J. Am. Chem. Soc. 2001, 123, 8531–8542.
- 16R. Augusti, A. O. Dias, L. L. Rocha, R. M. Lago, J. Phys. Chem. A 1998, 102, 10723–10727.
- 17A. K. Singh, S. Singh, A. Kumar, Catal. Sci. Technol. 2016, 6, 12–40.
- 18
- 18aS. G. Sun, J. Clavilier, A. Bewick, J. Electroanal. Chem. 1988, 240, 147–159;
- 18bH. Jeon, B. Jeong, J. Joo, J. Lee, Electrocatalysis 2015, 6, 20–32.
- 19J. Joo, T. Uchida, A. Cuesta, M. T. M. Koper, M. Osawa, J. Am. Chem. Soc. 2013, 135, 9991–9994.
- 20A. Rauk, D. Yu, D. A. Armstrong, J. Am. Chem. Soc. 1994, 116, 8222–8228.
- 21H. W. Gibson, Chem. Rev. 1969, 69, 673–692.
- 22
- 22aT. E. Peacock, Rias-ur-Rahma, D. H. Sleeman, E. S. G. Tuckley, Discuss. Faraday Soc. 1963, 35, 144–147;
10.1039/df9633500144 Google Scholar
- 22bD. Feller, E. S. Huyser, W. T. Borden, E. R. Davidson, J. Am. Chem. Soc. 1983, 105, 1459–1466;
- 22cW. M. F. Fabian, R. Janoschek, J. Mol. Struct. THEOCHEM 2005, 713, 227–234.
- 23J. Scaranto, M. Mavrikakis, Surf. Sci. 2016, 648, 201–211.
- 24R. J. Schmidt, Appl. Catal. A 2005, 280, 89–103.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.