Photoinduced Copper-Catalyzed Coupling of Terminal Alkynes and Alkyl Iodides
Avijit Hazra
Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
Search for more papers by this authorMitchell T. Lee
Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
Search for more papers by this authorJustin F. Chiu
Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
Search for more papers by this authorCorresponding Author
Prof. Gojko Lalic
Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
Search for more papers by this authorAvijit Hazra
Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
Search for more papers by this authorMitchell T. Lee
Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
Search for more papers by this authorJustin F. Chiu
Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
Search for more papers by this authorCorresponding Author
Prof. Gojko Lalic
Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
Search for more papers by this authorAbstract
We have developed a photoinduced copper-catalyzed alkylation of terminal alkynes with primary, secondary, or tertiary alkyl iodides as electrophiles. The reaction has a broad substrate scope and can be successfully performed in the presence of ester, nitrile, aryl halide, ketone, sulfonamide, epoxide, alcohol, and amide functional groups. The alkylation is promoted by blue light (λ≈450 nm) and proceeds at room temperature in the absence of any additional metal catalysts. The use of a terpyridine ligand is essential for the success of the reaction and is shown to prevent photoinduced copper-catalyzed polymerization of the starting materials.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201801085-sup-0001-misc_information.pdf3.9 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aG. Cahiez, O. Gager, J. Buendia, Angew. Chem. Int. Ed. 2010, 49, 1278–1281; Angew. Chem. 2010, 122, 1300–1303;
- 1bY. Shen, B. Huang, J. Zheng, C. Lin, Y. Liu, S. Cui, Org. Lett. 2017, 19, 1744–1747;
- 1cT. Thaler, L.-N. Guo, P. Mayer, P. Knochel, Angew. Chem. Int. Ed. 2011, 50, 2174–2177; Angew. Chem. 2011, 123, 2222–2225;
- 1dJ. He, M. Wasa, K. S. L. Chan, J.-Q. Yu, J. Am. Chem. Soc. 2013, 135, 3387–3390;
- 1eL. Huang, A. M. Olivares, D. J. Weix, Angew. Chem. Int. Ed. 2017, 56, 11901–11905; Angew. Chem. 2017, 129, 12063–12067.
- 2
- 2aT. Hatakeyama, Y. Okada, Y. Yoshimoto, M. Nakamura, Angew. Chem. Int. Ed. 2011, 50, 10973–10976; Angew. Chem. 2011, 123, 11165–11168;
- 2bH. Ohmiya, H. Yorimitsu, K. Oshima, Org. Lett. 2006, 8, 3093–3096;
- 2cO. Vechorkin, A. Godinat, R. Scopelliti, X. Hu, Angew. Chem. Int. Ed. 2011, 50, 11777–11781; Angew. Chem. 2011, 123, 11981–11985;
- 2dC. W. Cheung, P. Ren, X. Hu, Org. Lett. 2014, 16, 2566–2569;
- 2eJ. Caeiro, J. Pérez Sestelo, L. A. Sarandeses, Chem. Eur. J. 2008, 14, 741–746;
- 2fJ. M. Smith, T. Qin, R. R. Merchant, J. T. Edwards, L. R. Malins, Z. Liu, G. Che, Z. Shen, S. A. Shaw, M. D. Eastgate, P. S. Baran, Angew. Chem. Int. Ed. 2017, 56, 11906–11910; Angew. Chem. 2017, 129, 12068–12072.
- 3
- 3aF. Le Vaillant, T. Courant, J. Waser, Angew. Chem. Int. Ed. 2015, 54, 11200–11204; Angew. Chem. 2015, 127, 11352–11356;
- 3bX. Liu, Z. Wang, X. Cheng, C. Li, J. Am. Chem. Soc. 2012, 134, 14330–14333;
- 3cH. Huang, G. Zhang, L. Gong, S. Zhang, Y. Chen, J. Am. Chem. Soc. 2014, 136, 2280–2283;
- 3dC. Yang, J.-D. Yang, Y.-H. Li, X. Li, J.-P. Cheng, J. Org. Chem. 2016, 81, 12357–12363.
- 4J. Yang, J. Zhang, L. Qi, C. Hu, Y. Chen, Chem. Commun. 2015, 51, 5275–5278.
- 5For a light-promoted alkylation of aryl acetylenes that proceeds in the absence of a copper catalyst, see: W. Liu, L. Li, C.-J. Li, Nat. Commun. 2015, 6, 6526.
- 6G. Evano, K. Jouvin, C. Theunissen, C. Guissart, A. Laouiti, C. Tresse, J. Heimburger, Y. Bouhoute, R. Veillard, M. Lecomte, A. Nitelet, S. Schweizer, N. Blanchard, C. Alayrac, A. C. Gaumont, Chem. Commun. 2014, 50, 10008–10018.
- 7L. Jin, W. Hao, J. Xu, N. Sun, B. Hu, Z. Shen, W. Mo, X. Hu, Chem. Commun. 2017, 53, 4124–4127.
- 8
- 8aF.-X. Luo, X. Xu, D. Wang, Z.-C. Cao, Y.-F. Zhang, Z.-J. Shi, Org. Lett. 2016, 18, 2040–2043;
- 8bY. Yamane, N. Miwa, T. Nishikata, ACS Catal. 2017, 7, 6872–6876.
- 9
- 9aP. Maity, H. D. Srinivas, M. P. Watson, J. Am. Chem. Soc. 2011, 133, 17142–17145;
- 9bH. D. Srinivas, P. Maity, G. P. A. Yap, M. P. Watson, J. Org. Chem. 2015, 80, 4003–4016;
- 9cS. Dasgupta, T. Rivas, M. P. Watson, Angew. Chem. Int. Ed. 2015, 54, 14154–14158; Angew. Chem. 2015, 127, 14360–14364.
- 10
- 10aH.-P. Bi, L. Zhao, Y.-M. Liang, C.-J. Li, Angew. Chem. Int. Ed. 2009, 48, 792–795; Angew. Chem. 2009, 121, 806–809;
- 10bC. Zhang, D. Seidel, J. Am. Chem. Soc. 2010, 132, 1798–1799;
- 10cH. Zhang, P. Zhang, M. Jiang, H. Yang, H. Fu, Org. Lett. 2017, 19, 1016–1019.
- 11
- 11aR. Chinchilla, C. Nájera, Chem. Rev. 2007, 107, 874–922;
- 11bR. Chinchilla, C. Najera, Chem. Soc. Rev. 2011, 40, 5084–5121.
- 12M. Eckhardt, G. C. Fu, J. Am. Chem. Soc. 2003, 125, 13642–13643.
- 13
- 13aP. M. Pérez García, P. Ren, R. Scopelliti, X. Hu, ACS Catal. 2015, 5, 1164–1171;
- 13bO. Vechorkin, D. Barmaz, V. Proust, X. Hu, J. Am. Chem. Soc. 2009, 131, 12078–12079.
- 14
- 14aG. Altenhoff, S. Würtz, F. Glorius, Tetrahedron Lett. 2006, 47, 2925–2928;
- 14bJ. Yi, X. Lu, Y.-Y. Sun, B. Xiao, L. Liu, Angew. Chem. Int. Ed. 2013, 52, 12409–12413; Angew. Chem. 2013, 125, 12635–12639.
- 15
- 15aThe permitted daily oral exposure values recommended by the Food and Drug Administration are 200 μg day−1 for Ni, 100 μg day−1 for Pd, and 3000 μg day−1 for Cu; see: “Q3D Elemental Impurities Guidance for Industry”, U.S. Department of Health and Human Services, Food and Drug Administration, September 2015;
- 15bfor European standards, see: European Medicines Agency, Committee for medicinal products for human use, “Guideline on the specification limits for residues of metal catalysts of metal reagents”, London, 2008.
- 16
- 16aS. E. Creutz, K. J. Lotito, G. C. Fu, J. C. Peters, Science 2012, 338, 647–651;
- 16bC. Uyeda, Y. Tan, G. C. Fu, J. C. Peters, J. Am. Chem. Soc. 2013, 135, 9548–9552;
- 16cY. Tan, J. M. Munoz-Molina, G. C. Fu, J. C. Peters, Chem. Sci. 2014, 5, 2831–2835.
- 17A. Sagadevan, K. C. Hwang, Adv. Synth. Catal. 2012, 354, 3421–3427.
- 18For recent overviews on photocatalysis with copper complexes, see:
- 18aO. Reiser, Acc. Chem. Res. 2016, 49, 1990–1996;
- 18bS. Paria, O. Reiser, ChemCatChem 2014, 6, 2477–2483.
- 19
- 19aQ. M. Kainz, C. D. Matier, A. Bartoszewicz, S. L. Zultanski, J. C. Peters, G. C. Fu, Science 2016, 351, 681–684;
- 19bH.-Q. Do, S. Bachman, A. C. Bissember, J. C. Peters, G. C. Fu, J. Am. Chem. Soc. 2014, 136, 2162–2167;
- 19cC. D. Matier, J. Schwaben, J. C. Peters, G. C. Fu, J. Am. Chem. Soc. 2017, 139, 17707–17710;
- 19dA. C. Bissember, R. J. Lundgren, S. E. Creutz, J. C. Peters, G. C. Fu, Angew. Chem. Int. Ed. 2013, 52, 5129–5133; Angew. Chem. 2013, 125, 5233–5237;
- 19eJ. M. Ahn, T. S. Ratani, K. I. Hannoun, G. C. Fu, J. C. Peters, J. Am. Chem. Soc. 2017, 139, 12716–12723.
- 20T. S. Ratani, S. Bachman, G. C. Fu, J. C. Peters, J. Am. Chem. Soc. 2015, 137, 13902–13907.
- 21
- 21aF. Yang, J. Koeller, L. Ackermann, Angew. Chem. Int. Ed. 2016, 55, 4759–4762; Angew. Chem. 2016, 128, 4837–4840;
- 21bP. Gandeepan, J. Mo, L. Ackermann, Chem. Commun. 2017, 53, 5906–5909.
- 22A. Tlahuext-Aca, M. N. Hopkinson, B. Sahoo, F. Glorius, Chem. Sci. 2016, 7, 89–93.
- 23
- 23aV. W. W. Yam, W. K. Lee, T. F. Lai, Organometallics 1993, 12, 2383–2387;
- 23bV. W.-W. Yam, W.-K. Lee, K. K. Cheung, H.-K. Lee, W.-P. Leung, J. Chem. Soc. Dalton Trans. 1996, 2889–2891;
- 23cV. W.-W. Yam, K. Kam-Wing Lo, K. Man-Chung Wong, J. Organomet. Chem. 1999, 578, 3–30.
- 24A. A. Isse, C. Y. Lin, M. L. Coote, A. Gennaro, J. Phys. Chem. B 2011, 115, 678–684.
- 25Similar results were obtained in other reactions of alkyl- and aryl-substituted alkynes with both primary and secondary alkyl iodides. See the Supporting Information for details.
- 26For a detailed discussion of these results in light of the experiments presented in Ref. [21], see the Supporting Information.
- 27Lowering the catalyst loading to 5 mol % led to a small decrease in the product yield; see the Supporting Information, Table S4.
- 28M. Messner, S. I. Kozhushkov, A. De Meijere, Eur. J. Org. Chem. 2000, 1137–1155.
- 29F. Toriyama, J. Cornella, L. Wimmer, T.-G. Chen, D. D. Dixon, G. Creech, P. S. Baran, J. Am. Chem. Soc. 2016, 138, 11132–11135.
- 30During the preparation of this manuscript, Fu et al. reported a similar study in the context of amine alkylation; see Ref. [19c].
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.