Acoustic Emission from Organic Martensites
Dr. Manas K. Panda
New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
Present address: Photo Science & Photonics Section, Chemical Science and Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology, Trivandrum, 695019 India
Search for more papers by this authorDr. Martin Etter
Deutsches Elektronen Synchrotron (DESY), FS-PE, P02.1, Notkestr. 85, 22607 Hamburg, Germany
Search for more papers by this authorProf. Dr. Robert E. Dinnebier
Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
Search for more papers by this authorCorresponding Author
Prof. Dr. Panče Naumov
New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
Search for more papers by this authorDr. Manas K. Panda
New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
Present address: Photo Science & Photonics Section, Chemical Science and Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology, Trivandrum, 695019 India
Search for more papers by this authorDr. Martin Etter
Deutsches Elektronen Synchrotron (DESY), FS-PE, P02.1, Notkestr. 85, 22607 Hamburg, Germany
Search for more papers by this authorProf. Dr. Robert E. Dinnebier
Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
Search for more papers by this authorCorresponding Author
Prof. Dr. Panče Naumov
New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
Search for more papers by this authorAbstract
In salient effects, still crystals of solids that switch between phases acquire a momentum and are autonomously propelled because of rapid release of elastic energy accrued during a latent structural transition induced by heat, light, or mechanical stimulation. When mechanical reconfiguration is induced by change of temperature in thermosalient crystals, bursts of detectable acoustic waves are generated prior to self-actuation. These observations provide compelling evidence that the thermosalient transitions in organic and organic-containing crystals are molecular analogues of the martensitic transitions in some metals, and metal alloys such as steel and shape-memory alloys. Within a broader context, these results reveal that, akin to metallic bonding, the intermolecular interactions in molecular solids are capable of gradual accrual and sudden release of a substantial amount of strain during anisotropic thermal expansion, followed by a rapid transformation of the crystal packing in a diffusionless, non-displacive transition.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201702359-sup-0001-misc_information.pdf619.6 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. K. Panda, T. Runčevski, S. C. Sahoo, A. A. Belik, N. K. Nath, R. E. Dinnebier, P. Naumov, Nat. Commun. 2014, 5, 4811.
- 2M. K. Panda, T. Runčevski, A. Hussain, R. E. Dinnebier, P. Naumov, J. Am. Chem. Soc. 2015, 137, 1895–1902.
- 3S. C. Sahoo, M. K. Panda, N. K. Nath, P. Naumov, J. Am. Chem. Soc. 2013, 135, 12241–12251.
- 4N. K. Nath, M. K. Panda, S. C. Sahoo, P. Naumov, CrystEngComm 2014, 16, 1850–1858.
- 5Ž. Skoko, S. Zamir, P. Naumov, J. Bernstein, J. Am. Chem. Soc. 2010, 132, 14191–14202.
- 6S. Ghosh, M. K. Mishra, S. Ganguly, G. R. Desiraju, J. Am. Chem. Soc. 2015, 137, 9912–9921.
- 7S. C. Sahoo, S. B. Sinha, M. S. R. N. Kiran, U. Ramamurty, A. F. Dericioglu, C. M. Reddy, P. Naumov, J. Am. Chem. Soc. 2013, 135, 13843–13850.
- 8M. K. Panda, R. Centore, M. Causà, A. Tuzi, F. Borbone, P. Naumov, Sci. Rep. 2016, 6, 29610.
- 9P. Naumov, S. Chizhik, M. K. Panda, N. K. Nath, E. Boldyreva, Chem. Rev. 2015, 115, 12440–12490.
- 10P. Commins, I. T. Desta, D. P. Karothu, M. K. Panda, P. Naumov, Chem. Commun. 2016, 52, 13941–13954.
- 11P. Naumov, S. C. Sahoo, B. A. Zakharov, E. Boldyreva, Angew. Chem. Int. Ed. 2013, 52, 9990–9995; Angew. Chem. 2013, 125, 10174–10179.
- 12R. Medishetty, A. Husain, J. Bai, T. Runčevski, R. E. Dinnebier, P. Naumov, J. J. Vittal, Angew. Chem. Int. Ed. 2014, 53, 5907–5911; Angew. Chem. 2014, 126, 6017–6021.
- 13R. Medishetty, S. C. Sahoo, C. E. Mulijanto, P. Naumov, J. J. Vittal, Chem. Mater. 2015, 27, 1821–1829.
- 14T. Seki, K. Sakurada, M. Muromoto, H. Ito, Chem. Sci. 2015, 6, 1491–1497.
- 15D. P. Karothu, J. Weston, I. T. Desta, P. Naumov, J. Am. Chem. Soc. 2016, 138, 13298–13306.
- 16A. L. Roitburd, G. V. Kurdjumov, Mater. Sci. Eng. 1979, 39, 141–167.
- 17P. M. Kelly, J. Nutting, Proc. R. Soc. London Ser. A 1960, 259, 45–58.
- 18T. D. Kubyshkina, L. M. Pevzner, Y. M. Potak, Met. Sci. Heat Treat. 1960, 2, 425–430.
10.1007/BF00656472 Google Scholar
- 19A. G. Crocker, B. A. Bilby, Acta. Metall. 1961, 9, 678–688.
- 20X. Huang, G. J. Ackland, K. M. Rabe, Nat. Mater. 2003, 2, 307–311.
- 21J. Cui, Y. S. Chu, O. O. Famodu, Y. Furuya, J. Hattrick-Simpers, R. D. James, A. Ludwig, S. Thienhaus, M. Wuttig, Z. Zhang, I. Takeuchi, Nat. Mater. 2006, 5, 286–290.
- 22H. Y. Kim, Y. Ikehara, J. Y. Kim, H. Hosoda, S. Miyazaki, Acta Mater. 2006, 54, 2419–2429.
- 23D. Stroz, D. Chrobak, Mater. Trans. 2011, 52, 358–363.
- 24M. Nishida, T. Hara, T. Ohba, K. Yamaguchi, K. Tanaka, K. K. Yamauchi, Mater. Trans. 2003, 44, 2631–2636.
- 25P. M. Giles, M. H. Longenbach, A. R. Marder, J. Appl. Phys. 1971, 42, 4290–4295.
- 26J. A. Krumhansl, Y. Yamada, Mater. Sci. Eng. A 1990, 127, 167–181.
- 27M. H. Bocanegra-Bernal, S. D. De la Torre, J. Mater. Sci. 2002, 37, 4947–4971.
- 28V. D. Blank, B. A. Kulnitskiy, Scr. Mater. 1997, 37, 313–316.
- 29W. P. Mason, D. N. Beshers, M. C. Jon, J. T. Kuo, Ultrasonics 1975, 13, 128–131.
- 30J. W. Laughner, T. W. Cline, R. E. Newnham, L. E. Cross, Phys. Chem. Miner. 1979, 4, 129–137.
- 31J.-B. Chung, E. Kannatey-Asibu, J. Appl. Phys. 1992, 72, 1812–1820.
- 32K. Ono, H. Cho, M. Takuma, J. Acoust. Emiss. 2005, 23, 206–214.
- 33V. R. Skal's'kyi, O. E. Andreikiv, O. M. Serhienko, Mater. Sci. 2003, 39, 86–107.
- 34M. Janeček, R. Kral, P. Dobroň, F. Chemelik, V. Supik, F. Holländer, Mater. Sci. Eng. A 2007, 462, 311–315.
- 35E. Brevel, V. Srikanth, E. C. Subbarao, J. Am. Ceram. Soc. 1995, 78, 2541–2544.
- 36V. Srikanth, E. C. Subbarao, G. V. Rao, Ceram. Int. 1992, 18, 251–259.
- 37E. A. Dul'kin, I. P. Raevski, S. M. Emelyanov, Phys. Solid State 1997, 39, 316–317.
- 38T. Sawada, H. Gohshi, C. Abe, K. Furuya, Anal. Chem. 1985, 57, 1743–1745.
- 39O. E. Martinez, Y. Cesa, N. Mingolo, R. Romerio, Appl. Phys. B 2005, 80, 365–371.
- 40P. W. J. Glover, P. Baud, M. Darot, P. G. Meredith, S. A. Boon, M. LeRavaleq, S. Zoussi, T. Reuschle, Geophys. J. Int. 1995, 120, 775–782.
- 41K. Prabakar, S. P. M. Rao, Ferroelectr. Lett. Sect. 2005, 32, 99–110.
- 42C. Meade, R. Jeanloz, Nature 1989, 339, 616–618.
- 43R. K. Vasudevan, H. Khassaf, Y. Cao, S. Zhang, A. Tselev, B. Carmichael, M. B. Okatan, L.-Q. Chen, S. P. Alpay, S. V. Kalinin, N. Bassiri-Gharb, Adv. Funct. Mater. 2016, 26, 478–486.
- 44A. P. Hammersley, S. O. Svensson, M. Hanfland, A. N. Fitch, D. Hausermann, High Pressure Res. 1996, 14, 235–248.
- 45B. Hinrichsen, R. E. Dinnebier, M. Z. Jansen, Z. Kristallogr. 2006, 23, 231–236.
10.1524/zksu.2006.suppl_23.231 Google Scholar
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.