A Carbon Dioxide Bubble-Induced Vortex Triggers Co-Assembly of Nanotubes with Controlled Chirality
Corresponding Author
Dr. Ling Zhang
PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
Search for more papers by this authorLaicheng Zhou
PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
Search for more papers by this authorNa Xu
PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
Search for more papers by this authorZhenjie Ouyang
PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
Search for more papers by this authorCorresponding Author
Dr. Ling Zhang
PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
Search for more papers by this authorLaicheng Zhou
PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
Search for more papers by this authorNa Xu
PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
Search for more papers by this authorZhenjie Ouyang
PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
Search for more papers by this authorAbstract
It is challenging to prepare co-organized nanotube systems with controlled nanoscale chirality in an aqueous liquid flow field. Such systems are responsive to a bubbled external gas. A liquid vortex induced by bubbling carbon dioxide (CO2) gas was used to stimulate the formation of nanotubes with controlled chirality; two kinds of achiral cationic building blocks were co-assembled in aqueous solution. CO2-triggered nanotube formation occurs by formation of metastable intermediate structures (short helical ribbons and short tubules) and by transition from short tubules to long tubules in response to chirality matching self-assembly. Interestingly, the chirality sign of these assemblies can be selected for by the circulation direction of the CO2 bubble-induced vortex during the co-assembly process.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201701749-sup-0001-misc_information.pdf671.5 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aT. Shimizu, M. Masuda, H. Minamikawa, Chem. Rev. 2005, 105, 1401–1443;
- 1bT. Aida, E. W. Meijer, S. I. Stupp, Science 2012, 335, 813–817;
- 1cZ. Huang, S. K. Kang, M. Banno, T. Yamaguchi, D. Lee, C. Seok, E. Yashima, M. Lee, Science 2012, 337, 1521–1526;
- 1dT. G. Barclay, K. Constantopoulos, J. Matisons, Chem. Rev. 2014, 114, 10217–10291 and references therein.
- 2
- 2aM. Liu, L. Zhang, T. Wang, Chem. Rev. 2015, 115, 7304–7397;
- 2bE. Krieg, M. M. C. Bastings, P. Besenius, B. Rybtchinski, Chem. Rev. 2016, 116, 2414–2477.
- 3P. L. Luisi, The Emergence of Life. From Chemical Origins to Synthetic Biology, Cambridge University Press, New York, 2010.
- 4
- 4aJ. M. Ribo, J. Crusats, F. Sagues, J. Claret, R. Rubires, Science 2001, 292, 2063–2066;
- 4bT. Yamaguchi, T. Kimura, H. Matsuda, T. Aida, Angew. Chem. Int. Ed. 2004, 43, 6350–6355; Angew. Chem. 2004, 116, 6510–6515;
- 4cC. Escudero, J. Crusats, I. Diez-Perez, Z. El-Hachemi, J. M. Ribo, Angew. Chem. Int. Ed. 2006, 45, 8032–8035; Angew. Chem. 2006, 118, 8200–8203;
- 4dA. Tsuda, M. A. Alam, T. Harada, T. Yamaguchi, N. Ishii, T. Aida, Angew. Chem. Int. Ed. 2007, 46, 8198–8202; Angew. Chem. 2007, 119, 8346–8350;
- 4eJ. Crusats, Z. El-Hachemi, J. M. Ribo, Chem. Soc. Rev. 2010, 39, 569–577;
- 4fA. D'Urso, R. Randazzo, L. LoFaro, R. Purrello, Angew. Chem. Int. Ed. 2010, 49, 108–112; Angew. Chem. 2010, 122, 112–116;
- 4gK. Okano, O. Arteaga, J. M. Ribo, T. Yamashita, Chem. Eur. J. 2011, 17, 9288–9292;
- 4hK. Okano, M. Taguchi, M. Fujiki, T. Yamashita, Angew. Chem. Int. Ed. 2011, 50, 12474–12477; Angew. Chem. 2011, 123, 12682–12685;
- 4iA. Sorrenti, Z. El-Hachemi, O. Arteaga, A. Canillas, J. Crusats, J. M. Ribo, Chem. Eur. J. 2012, 18, 8820–8826;
- 4jN. Micali, H. Engelkamp, P. G. van Rhee, P. C. M. Christianen, L. M. Scolaro, J. C. Maan, Nat. Chem. 2012, 4, 201–207;
- 4kN. Petit-Garrido, J. Claret, J. Ignes-Mullol, F. Sagues, Nat. Commun. 2012, 3, 1001.
- 5
- 5aR. M. Tejedor, L. Oriol, J. L. Serrano, F. Partal-Ureña, J. J. López-González, Adv. Funct. Mater. 2007, 17, 3486–3492;
- 5bY. Xu, H. Jiang, Q. Zhang, F. Wang, G. Zou, Chem. Commun. 2014, 50, 365–367;
- 5cY. Xu, G. Yang, H. Xia, G. Zou, Q. Zhang, J. Gao, Nat. Commun. 2014, 5, 5050.
- 6
- 6aP. Chen, X. Ma, K. Hu, Y. Rong, M. Liu, Chem. Eur. J. 2011, 17, 12108–12114;
- 6bY. Zhang, P. Chen, L. Jiang, W. Hu, M. Liu, J. Am. Chem. Soc. 2009, 131, 2756–2757.
- 7M. E. Díaz, F. J. Montes, M. A. Galán, Ind. Eng. Chem. Res. 2006, 45, 7301–7312.
- 8O. Borchers, C. Busch, A. Sokolichin, G. Eigenberger, Chem. Eng. Sci. 1999, 54, 5927–5935.
- 9S. Becker, A. Sokolichin, G. Eigenberger, Chem. Eng. Sci. 1994, 49, 5747–5762.
- 10Q. Yan, R. Zhou, C. K. Fu, H. J. Zhang, Y. W. Yin, J. Y. Yuan, Angew. Chem. Int. Ed. 2011, 50, 4923–4927; Angew. Chem. 2011, 123, 5025–5029.
- 11
- 11aW. F. Edmonds, M. A. Hillmyer, T. P. Lodge, Macromolecules 2007, 40, 4917–4923;
- 11bW. Li, J. Zhang, B. Han, Y. Zhao, RSC Adv. 2011, 1, 776–781;
- 11cQ. Yan, Y. Zhao, Angew. Chem. Int. Ed. 2013, 52, 9948–9951; Angew. Chem. 2013, 125, 10132–10135;
- 11dQ. Yan, Y. Zhao, J. Am. Chem. Soc. 2013, 135, 16300–16303;
- 11eL. Qin, L. Zhang, Q. Jin, J. Zhang, B. Han, M. Liu, Angew. Chem. Int. Ed. 2013, 52, 7761–7765; Angew. Chem. 2013, 125, 7915–7919;
- 11fK. Jie, Y. Zhou, Y. Yao, B. Shi, F. Huang, J. Am. Chem. Soc. 2015, 137, 10472–10475.
- 12
- 12aJ. M. Schnur, Science 1993, 262, 1669–1676;
- 12bR. Oda, I. Huc, M. Schmutz, S. J. Candau, F. C. MacKintosh, Nature 1999, 399, 566–569.
- 13Y. Tahara, Y. Fujiyoshi, Micron 1994, 25, 141–149.
- 14T. Kunitake, Y. Okahata, M. Shimomura, S. Yasunami, K. Takarabe, J. Am. Chem. Soc. 1981, 103, 5401–5413.
- 15A. A. Beharry, G. A. Woolley, Chem. Soc. Rev. 2011, 40, 4422–4437.
- 16
- 16aH. Menzel, B. Weichart, A. Schmidt, S. Paul, W. Knoll, J. Stumpe, T. Fischer, Langmuir 1994, 10, 1926–1933;
- 16bQ. Bo, Y. Zhao, Langmuir 2007, 23, 5746–5751.
- 17As a precautionary note, we have ruled out the possibility that the CO2 bubble-induced vortex causes deposition of aligned aggregates and have excluded the occurrence of instrumental artifacts such as linear dichroism (LD). Such a study of the mechano-chiral effect requires numerous repeated experiments, for which reproducibility depends on the careful control of the experimental parameters.
- 18
- 18aG. Zou, H. Jiang, Q. Zhang, H. Kohn, T. Manaka, M. Iwamoto, J. Mater. Chem. 2010, 20, 285–291;
- 18bH. Jiang, X. J. Pan, Z. Y. Lei, G. Zou, Q. J. Zhang, K. Y. Wang, J. Mater. Chem. 2011, 21, 4518–4522.
- 19
- 19aJ. J. J. Chen, M. Jamialahmadi, S. M. Li, Chem. Eng. Res. Des. 1989, 67, 203–207;
- 19bE. Delnoij, J. A. M. Kuipers, W. P. M. van Swaaij, Chem. Eng. Sci. 1997, 52, 3759–3772.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.