A Redox-Activatable Fluorescent Sensor for the High-Throughput Quantification of Cytosolic Delivery of Macromolecules
Dr. Zhaohui Wang
Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390 USA
These authors contributed equally to this work.
Search for more papers by this authorDr. Min Luo
Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390 USA
These authors contributed equally to this work.
Search for more papers by this authorDr. Chengqiong Mao
Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390 USA
Search for more papers by this authorDr. Qi Wei
Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390 USA
Search for more papers by this authorDr. Tian Zhao
Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390 USA
Search for more papers by this authorYang Li
Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390 USA
Search for more papers by this authorDr. Gang Huang
Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390 USA
Search for more papers by this authorCorresponding Author
Prof. Jinming Gao
Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390 USA
Search for more papers by this authorDr. Zhaohui Wang
Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390 USA
These authors contributed equally to this work.
Search for more papers by this authorDr. Min Luo
Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390 USA
These authors contributed equally to this work.
Search for more papers by this authorDr. Chengqiong Mao
Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390 USA
Search for more papers by this authorDr. Qi Wei
Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390 USA
Search for more papers by this authorDr. Tian Zhao
Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390 USA
Search for more papers by this authorYang Li
Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390 USA
Search for more papers by this authorDr. Gang Huang
Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390 USA
Search for more papers by this authorCorresponding Author
Prof. Jinming Gao
Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390 USA
Search for more papers by this authorAbstract
Efficient delivery of biomacromolecules (e.g., proteins, nucleic acids) into cell cytosol remains a critical challenge for the development of macromolecular therapeutics or diagnostics. To date, most common approaches to assess cytosolic delivery rely on fluorescent labeling of macromolecules with an “always on” reporter and subcellular imaging of endolysosomal escape by confocal microscopy. This strategy is limited by poor signal-to-noise ratio and only offers low throughput, qualitative information. Herein we describe a quantitative redox-activatable sensor (qRAS) for the real-time monitoring of cytosolic delivery of macromolecules. qRAS-labeled macromolecules are silent (off) inside the intact endocytic organelles, but can be turned on by redox activation after endolysosomal disruption and delivery into the cytosol, thereby greatly improving the detection accuracy. In addition to confocal microscopy, this quantitative sensing technology allowed for a high-throughput screening of a panel of polymer carriers toward efficient cytosolic delivery of model proteins on a plate reader. The simple and versatile qRAS design offers a useful tool for the investigation of new strategies for endolysosomal escape of biomacromolecules to facilitate the development of macromolecular therapeutics for a variety of disease indications.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201610302-sup-0001-misc_information.pdf1.7 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aH. J. Kong, D. J. Mooney, Nat. Rev. Drug Discovery 2007, 6, 455–463;
- 1bU. Lächelt, E. Wagner, Chem. Rev. 2015, 115, 11043–11078;
- 1cD. Castanotto, J. J. Rossi, Nature 2009, 457, 426–433.
- 2
- 2aL. M. Bareford, P. W. Swaan, Adv. Drug Delivery Rev. 2007, 59, 748–758;
- 2bK. A. Whitehead, R. Langer, D. G. Anderson, Nat. Rev. Drug Discovery 2009, 8, 129–138.
- 3
- 3aD. W. Pack, A. S. Hoffman, S. Pun, P. S. Stayton, Nat. Rev. Drug Discovery 2005, 4, 581–593;
- 3bZ. Gu, A. Biswas, M. Zhao, Y. Tang, Chem. Soc. Rev. 2011, 40, 3638–3655;
- 3cY. Jiang, R. Tang, B. Duncan, Z. Jiang, B. Yan, R. Mout, V. M. Rotello, Angew. Chem. Int. Ed. 2015, 54, 506–510; Angew. Chem. 2015, 127, 516–520;
- 3dX. L. Wang, S. Ramusovic, T. Nguyen, Z. R. Lu, Bioconjugate Chem. 2007, 18, 2169–2177.
- 4
- 4aJ. M. Holub, J. R. Larochelle, J. S. Appelbaum, A. Schepartz, Biochemistry 2013, 52, 9036–9046;
- 4bZ. J. Deng, S. W. Morton, D. K. Bonner, L. Gu, H. Ow, P. T. Hammond, Biomaterials 2015, 51, 250–256.
- 5
- 5aJ. Gilleron, W. Querbes, A. Zeigerer, A. Borodovsky, G. Marsico, U. Schubert, K. Manygoats, S. Seifert, C. Andree, M. Stoter, H. Epstein-Barash, L. Zhang, V. Koteliansky, K. Fitzgerald, E. Fava, M. Bickle, Y. Kalaidzidis, A. Akinc, M. Maier, M. Zerial, Nat. Biotechnol. 2013, 31, 638–646;
- 5bG. Sahay, W. Querbes, C. Alabi, A. Eltoukhy, S. Sarkar, C. Zurenko, E. Karagiannis, K. Love, D. Chen, R. Zoncu, Y. Buganim, A. Schroeder, R. Langer, D. G. Anderson, Nat. Biotechnol. 2013, 31, 653–658.
- 6
- 6aA. Rietsch, J. Beckwith, Annu. Rev. Genet. 1998, 32, 163–184;
- 6bF. Q. Schafer, G. R. Buettner, Free Radical Biol. Med. 2001, 30, 1191–1212.
- 7
- 7aE. P. Feener, W. C. Shen, H. J. Ryser, J. Biol. Chem. 1990, 265, 18780–18785;
- 7bY. M. Go, D. P. Jones, Biochim. Biophys. Acta Gen. Subj. 2008, 1780, 1273–1290;
- 7cS. Santra, C. Kaittanis, O. J. Santiesteban, J. M. Perez, J. Am. Chem. Soc. 2011, 133, 16680–16688.
- 8
- 8aS. Maiti, N. Park, J. H. Han, H. M. Jeon, J. H. Lee, S. Bhuniya, C. Kang, J. S. Kim, J. Am. Chem. Soc. 2013, 135, 4567–4572;
- 8bM. H. Lee, J. Y. Kim, J. H. Han, S. Bhuniya, J. L. Sessler, C. Kang, J. S. Kim, J. Am. Chem. Soc. 2012, 134, 12668–12674;
- 8cJ. O. Onyango, M. S. Chung, C. H. Eng, L. M. Klees, R. Langenbacher, L. Yao, M. An, Angew. Chem. Int. Ed. 2015, 54, 3658–3663; Angew. Chem. 2015, 127, 3729–3734;
- 8dC. D. Austin, X. Wen, L. Gazzard, C. Nelson, R. H. Scheller, S. J. Scales, Proc. Natl. Acad. Sci. USA 2005, 102, 17987–17992.
- 9R. Roy, S. Hohng, T. Ha, Nat. Methods 2008, 5, 507–516.
- 10M. K. Johansson, Methods Mol. Biol. 2006, 335, 17–29.
- 11M. Lee, N. G. Gubernator, D. Sulzer, D. Sames, J. Am. Chem. Soc. 2010, 132, 8828–8830.
- 12
- 12aH. Xiong, Z. Zhou, M. Zhu, X. Lv, A. Li, S. Li, L. Li, T. Yang, S. Wang, Z. Yang, T. Xu, Q. Luo, H. Gong, S. Zeng, Nat. Commun. 2014, 5, 3992;
- 12bB. George Abraham, K. S. Sarkisyan, A. S. Mishin, V. Santala, N. V. Tkachenko, M. Karp, PLoS One 2015, 10, e 0134436;
- 12cL. Xue, E. Prifti, K. Johnsson, J. Am. Chem. Soc. 2016, 138, 5258–5261;
- 12dM. Ogawa, N. Kosaka, P. L. Choyke, H. Kobayashi, ACS Chem. Biol. 2009, 4, 535–546.
- 13
- 13aR. V. Benjaminsen, M. A. Mattebjerg, J. R. Henriksen, S. M. Moghimi, T. L. Andresen, Mol. Ther. 2013, 21, 149–157;
- 13bA. E. Nel, L. Madler, D. Velegol, T. Xia, E. M. Hoek, P. Somasundaran, F. Klaessig, V. Castranova, M. Thompson, Nat. Mater. 2009, 8, 543–557.
- 14X. Ma, Y. Wang, T. Zhao, Y. Li, L. C. Su, Z. Wang, G. Huang, B. D. Sumer, J. Gao, J. Am. Chem. Soc. 2014, 136, 11085–11092.
- 15C. Wang, Y. Wang, Y. Li, B. Bodemann, T. Zhao, X. Ma, G. Huang, Z. Hu, R. J. DeBerardinis, M. A. White, J. Gao, Nat. Commun. 2015, 6, 8524.
- 16
- 16aM. Breunig, U. Lungwitz, R. Liebl, A. Goepferich, Proc. Natl. Acad. Sci. USA 2007, 104, 14454–14459;
- 16bJ. W. Wiseman, C. A. Goddard, D. McLelland, W. H. Colledge, Gene Ther. 2003, 10, 1654–1662;
- 16cM. Derouazi, P. Girard, F. Van Tilborgh, K. Iglesias, N. Muller, M. Bertschinger, F. M. Wurm, Biotechnol. Bioeng. 2004, 87, 537–545.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.