Reactions between Criegee Intermediates and the Inorganic Acids HCl and HNO3: Kinetics and Atmospheric Implications
Elizabeth S. Foreman
Department of Chemistry, University of California, Irvine, Irvine, CA, 92697 USA
Search for more papers by this authorKara M. Kapnas
Department of Chemistry, University of California, Irvine, Irvine, CA, 92697 USA
Search for more papers by this authorCorresponding Author
Dr. Craig Murray
Department of Chemistry, University of California, Irvine, Irvine, CA, 92697 USA
Search for more papers by this authorElizabeth S. Foreman
Department of Chemistry, University of California, Irvine, Irvine, CA, 92697 USA
Search for more papers by this authorKara M. Kapnas
Department of Chemistry, University of California, Irvine, Irvine, CA, 92697 USA
Search for more papers by this authorCorresponding Author
Dr. Craig Murray
Department of Chemistry, University of California, Irvine, Irvine, CA, 92697 USA
Search for more papers by this authorAbstract
Criegee intermediates (CIs) are a class of reactive radicals that are thought to play a key role in atmospheric chemistry through reactions with trace species that can lead to aerosol particle formation. Recent work has suggested that water vapor is likely to be the dominant sink for some CIs, although reactions with trace species that are sufficiently rapid can be locally competitive. Herein, we use broadband transient absorption spectroscopy to measure rate constants for the reactions of the simplest CI, CH2OO, with two inorganic acids, HCl and HNO3, both of which are present in polluted urban atmospheres. Both reactions are fast; at 295 K, the reactions of CH2OO with HCl and HNO3 have rate constants of 4.6×10−11 cm3 s−1 and 5.4×10−10 cm3 s−1, respectively. Complementary quantum-chemical calculations show that these reactions form substituted hydroperoxides with no energy barrier. The results suggest that reactions of CIs with HNO3 in particular are likely to be competitive with those with water vapor in polluted urban areas under conditions of modest relative humidity.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201604662-sup-0001-misc_information.pdf674.9 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1R. Criegee, Angew. Chem. Int. Ed. Engl. 1975, 14, 745–752; Angew. Chem. 1975, 87, 765–771.
- 2D. Johnson, G. Marston, Chem. Soc. Rev. 2008, 37, 699–716.
- 3S. E. Paulson, J. J. Orlando, Geophys. Res. Lett. 1996, 23, 3727–3730.
- 4S. Hatakeyama, H. Akimoto, Res. Chem. Intermed. 1994, 20, 503–524.
- 5A. Sadezky, R. Winterhalter, B. Kanawati, A. Römpp, B. Spengler, A. Mellouki, G. Le Bras, P. Chaimbault, G. K. Moortgat, Atmos. Chem. Phys. 2008, 8, 2667–2699.
- 6M. Hallquist et al., Atmos. Chem. Phys. 2009, 9, 5155–5236.
- 7Y. Sakamoto, S. Inomata, J. Hirokawa, J. Phys. Chem. A 2013, 117, 12912–12921.
- 8C. A. Taatjes, D. E. Shallcross, C. J. Percival, Phys. Chem. Chem. Phys. 2014, 16, 1704–1718.
- 9E. Miliordos, S. S. Xantheas, Angew. Chem. Int. Ed. 2016, 55, 1015–1019; Angew. Chem. 2016, 128, 1027–1031.
- 10B. J. Finlayson, J. N. Pitts, H. Akimoto, Chem. Phys. Lett. 1972, 12, 495–498.
- 11O. Welz, J. D. Savee, D. L. Osborn, S. S. Vasu, C. J. Percival, D. E. Shallcross, C. A. Taatjes, Science 2012, 335, 204–207.
- 12C. A. Taatjes, O. Welz, A. J. Eskola, J. D. Savee, D. L. Osborn, E. P. F. Lee, J. M. Dyke, D. W. K. Mok, D. E. Shallcross, C. J. Percival, Phys. Chem. Chem. Phys. 2012, 14, 10391.
- 13O. Welz et al., Angew. Chem. Int. Ed. 2014, 53, 4547–4550; Angew. Chem. 2014, 126, 4635–4638.
- 14D. L. Osborn, C. A. Taatjes, Int. Rev. Phys. Chem. 2015, 34, 309–360.
- 15M. Jang, Science 2002, 298, 814–817.
- 16R. A. Cox, S. A. Penkett, Nature 1971, 230, 321–322.
- 17R. L. Mauldin III, T. Berndt, M. Sipilä, P. Paasonen, T. Petäjä, S. Kim, T. Kurtén, F. Stratmann, V.-M. Kerminen, M. Kulmala, Nature 2012, 488, 193–196.
- 18M. Boy et al., Atmos. Chem. Phys. 2013, 13, 3865–3879.
- 19D. Stone, M. Blitz, L. Daubney, N. U. M. Howes, P. Seakins, Phys. Chem. Chem. Phys. 2014, 16, 1139–1149.
- 20W. Chao, J.-T. Hsieh, C.-H. Chang, J. J.-M. Lin, Science 2015, 347, 751–754.
- 21T. R. Lewis, M. A. Blitz, D. E. Heard, P. W. Seakins, Phys. Chem. Chem. Phys. 2015, 17, 4859–4863.
- 22M. C. Smith, C.-H. Chang, W. Chao, L.-C. Lin, K. Takahashi, K. A. Boering, J. J.-M. Lin, J. Phys. Chem. Lett. 2015, 6, 2708–2713.
- 23A. B. Ryzhkov, P. A. Ariya, Phys. Chem. Chem. Phys. 2004, 6, 5042.
- 24H.-L. Huang, W. Chao, J. J.-M. Lin, Proc. Natl. Acad. Sci. USA 2015, 112, 10857–10862.
- 25C. A. Taatjes et al., Science 2013, 340, 177–180.
- 26L. Sheps, A. M. Scully, K. Au, Phys. Chem. Chem. Phys. 2014, 16, 26701–26706.
- 27Y. Zhao, L. M. Wingen, V. Perraud, J. Greaves, B. J. Finlayson-Pitts, Phys. Chem. Chem. Phys. 2015, 17, 12500–12514.
- 28E. Sanhueza, Tellus Ser. B 2001, 53, 122–132.
- 29I. Bey, D. J. Jacob, R. M. Yantosca, J. A. Logan, B. D. Field, A. M. Fiore, Q. Li, H. Y. Liu, L. J. Mickley, M. G. Schultz, J. Geophys. Res. 2001, 106, 23073–23095.
- 30T. A. Crisp, B. M. Lerner, E. J. Williams, P. K. Quinn, T. S. Bates, T. H. Bertram, J. Geophys. Res. 2014, 119, 6897–6915.
- 31E. S. Foreman, K. M. Kapnas, Y. Jou, J. Kalinowski, D. Feng, R. B. Gerber, C. Murray, Phys. Chem. Chem. Phys. 2015, 17, 32539–32546.
- 32A. J. Eskola, D. Wojcik-Pastuszka, E. Ratajczak, R. S. Timonen, Phys. Chem. Chem. Phys. 2006, 8, 1416.
- 33H. Huang, A. J. Eskola, C. A. Taatjes, J. Phys. Chem. Lett. 2012, 3, 3399–3403.
- 34H. Huang, B. Rotavera, A. J. Eskola, C. A. Taatjes, J. Phys. Chem. Lett. 2013, 4, 3824–3824.
- 35W.-L. Ting, C.-H. Chang, Y.-F. Lee, H. Matsui, Y.-P. Lee, J. J.-M. Lin, J. Chem. Phys. 2014, 141, 104308.
- 36Y.-H. Huang, L.-W. Chen, Y.-P. Lee, J. Phys. Chem. Lett. 2015, 6, 4610–4615.
- 37L. Sheps, J. Phys. Chem. Lett. 2013, 4, 4201–4205.
- 38W.-L. Ting, Y.-H. Chen, W. Chao, M. C. Smith, J. J.-M. Lin, Phys. Chem. Chem. Phys. 2014, 16, 10438–10443.
- 39E. S. Foreman, C. Murray, J. Phys. Chem. A 2015, 119, 8981–8990.
- 40P. Spietz, J. C. Gómez Martín, J. P. Burrows, J. Photochem. Photobiol. A 2005, 176, 50–67.
- 41H. J. Tobias, P. J. Ziemann, J. Phys. Chem. A 2001, 105, 6129–6135.
- 42W. V. Turner, S. Gäb, J. Org. Chem. 1992, 57, 1610–1613.
- 43B. Ruscic, J. Phys. Chem. A 2013, 117, 11940–11953.
- 44A. Ianniello, F. Spataro, G. Esposito, I. Allegrini, M. Hu, T. Zhu, Atmos. Chem. Phys. 2011, 11, 10803–10822.
- 45L. T. Molina et al., Atmos. Chem. Phys. 2010, 10, 8697–8760.
- 46L. A. Morio, K. A. Hooper, J. Brittingham, T.-H. Li, R. E. Gordon, B. J. Turpin, D. L. Laskin, Toxicol. Appl. Pharmacol. 2001, 177, 188–199.
- 47J. B. Burkholder, S. P. Sander, J. Abbatt, J. R. Barker, R. E. Huie, C. E. Kolb, M. J. Kurylo, V. L. Orkin, D. M. Wilmouth, P. H. Wine, Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18, JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena, 2015, http://jpldataeval.jpl.nasa.gov.
- 48A. V. Jackson, C. N. Hewitt, Crit. Rev. Environ. Sci. Technol. 1999, 29, 175–228.
- 49M. Baasandorj, D. K. Papanastasiou, R. K. Talukdar, A. S. Hasson, J. B. Burkholder, Phys. Chem. Chem. Phys. 2010, 12, 12101–12111.
- 50M. C. Smith, W. Chao, K. Takahashi, K. A. Boering, J. J.-M. Lin, J. Phys. Chem. A 2016, 120, 4789–4798.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.