Towards a DNA Nanoprocessor: Reusable Tile-Integrated DNA Circuits
Dr. Yulia V. Gerasimova
Chemistry Department, University of Central Florida, Orlando, FL, 32816 USA
Search for more papers by this authorCorresponding Author
Dr. Dmitry M. Kolpashchikov
Chemistry Department, University of Central Florida, Orlando, FL, 32816 USA
Search for more papers by this authorDr. Yulia V. Gerasimova
Chemistry Department, University of Central Florida, Orlando, FL, 32816 USA
Search for more papers by this authorCorresponding Author
Dr. Dmitry M. Kolpashchikov
Chemistry Department, University of Central Florida, Orlando, FL, 32816 USA
Search for more papers by this authorAbstract
Modern electronic microprocessors use semiconductor logic gates organized on a silicon chip to enable efficient inter-gate communication. Here, arrays of communicating DNA logic gates integrated on a single DNA tile were designed and used to process nucleic acid inputs in a reusable format. Our results lay the foundation for the development of a DNA nanoprocessor, a small and biocompatible device capable of performing complex analyses of DNA and RNA inputs.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201603265-sup-0001-misc_information.pdf662.8 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. P. Malvino, J. A. Brown, Digital computer electronics, 3rd ed., Glencoe, Lake Forest, 1993.
- 2A. G. Bromley, IEEE Ann. Hist. Comput. 1838, 4, 197–217.
- 3
- 3aR. P. Feynman, Eng. Sci. 1950, 23, 22;
- 3bP. Ball, Nature 2000, 406, 118.
- 4A. P. De Silva, H. Q. N. Gunaratne, C. P. McCoy, Nature 1993, 364, 42.
- 5
- 5aA. P. De Silva, Y. Leydet, C. Lincheneau, N. D. McClenaghan, J. Phys. 2006, 18, S 1847;
- 5bK. Szaciłowski, Chem. Rev. 2008, 108, 3481, and references therein;
- 5cY. Benenson, Nat. Rev. Genet. 2012, 13, 455–468;
- 5dJ. Andréasson, U. Pischel, Chem. Soc. Rev. 2015, 44, 1053, and references therein;
- 5eM. N. Stojanovic, D. Stefanovic, S. Rudchenko, Acc. Chem. Res. 2014, 47, 1845;
- 5fR. Orbach, B. Willner, I. Willner, Chem. Commun. 2015, 51, 4144.
- 6
- 6aM. N. Stojanovic, T. E. Mitchell, D. Stefanovic, J. Am. Chem. Soc. 2002, 124, 3555;
- 6bA. Okamoto, K. Tanaka, I. Saito, J. Am. Chem. Soc. 2004, 126, 9458;
- 6cB. M. Frezza, S. L. Cockroft, M. R. Ghadiri, J. Am. Chem. Soc. 2007, 129, 14875;
- 6dY. Krishnan, F. C. Simmel, Angew. Chem. Int. Ed. 2011, 50, 3124–3156; Angew. Chem. 2011, 123, 3180–3215;
- 6eK. S. Park, M. W. Seo, C. Jung, J. Y. Lee, H. G. Park, Small 2012, 8, 2203;
- 6fA. Prokup, J. Hemphill, A. Deiters, J. Am. Chem. Soc. 2012, 134, 3810;
- 6gA. Padirac, T. Fujii, Y. Rondelez, Curr. Opin. Biotechnol. 2013, 24, 575;
- 6hF. Wang, C.-H. Lu, I. Willner, Chem. Rev. 2014, 114, 2881;
- 6iK. Furukawa, N. Minakawa, Org. Biomol. Chem. 2014, 12, 3344;
- 6jD. Han, H. Kang, T. Zhang, C. Wu, C. Zhou, M. You, Z. Chen, X. Zhang, W. Tan, Chem. Eur. J. 2014, 20, 5866;
- 6kC. W. Brown III, M. R. Lakin, E. K. Horwitz, M. L. Fanning, H. E. West, D. Stefanovic, S. W. Graves, Angew. Chem. Int. Ed. 2014, 53, 7183; Angew. Chem. 2014, 126, 7311;
- 6lY. V. Gerasimova, D. M. Kolpashchikov, Chem. Commun. 2015, 51, 870;
- 6mA. Prokup, J. Hemphill, Q. Liu, A. Deiters, ACS Synth. Biol. 2015, 4, 1064;
- 6nS. Mailloux, Y. V. Gerasimova, N. Guz, D. M. Kolpashchikov, E. Katz, Angew. Chem. Int. Ed. 2015, 54, 6562; Angew. Chem. 2015, 127, 6662;
- 6oS. Bi, J. Ye, Y. Dong, H. Li, W. Cao, Chem. Commun. 2016, 52, 402;
- 6pR. Orbach, F. Wang, O. Lioubashevski, R. D. Levine, F. Remacle, I. Willner, Chem. Sci. 2014, 5, 3381;
- 6qL. Freage, A. Trifonov, R. Tel-Vered, E. Golub, F. Wang, J. S. McCaskill, I. Willner, Chem. Sci. 2015, 6, 3544.
- 7M. N. Stojanovic, D. Stefanovic, Nat. Biotechnol. 2003, 21, 1069.
- 8G. Seelig, D. Soloveichik, D. Y. Zhang, E. Winfree, Science 2006, 314, 1585.
- 9L. Qian, E. Winfree, J. Bruck, Nature 2011, 475, 368.
- 10A. P. De Silva, S. Uchiyama, Nat. Nanotechnol. 2007, 2, 399.
- 11D. M. Lilley, Q. Rev. Biophys. 2000, 33, 109.
- 12
- 12aS. Tyagi, F. R. Kramer, Nat. Biotechnol. 1996, 14, 303;
- 12bD. M. Kolpashchikov, Scientifica 2012, 928783, and references therein;
- 12cD. M. Kolpashchikov, J. Am. Chem. Soc. 2006, 128, 10625;
- 12dY. V. Gerasimova, A. Hayson, J. Ballantyne, D. M. Kolpashchikov, ChemBioChem 2010, 11, 1762.
- 13
- 13aA. Lake, S. Shang, D. M. Kolpashchikov, Angew. Chem. Int. Ed. 2010, 49, 4459; Angew. Chem. 2010, 122, 4561;
- 13bY. V. Gerasimova, D. M. Kolpashchikov, Chem. Asian J. 2012, 7, 534.
- 14
- 14aT.-J. Fu, N. C. Seeman, Biochemistry 1993, 32, 3211;
- 14bA. V. Garibotti, S. M. Knudsen, A. D. Ellington, N. C. Seeman, Nano Lett. 2006, 6, 1505;
- 14cB. Kim, S. Jo, J. Son, J. Kim, M. H. Kim, S. U. Hwang, S. R. Dugasani, B. D. Kim, W. K. Liu, M. K. Kim, S. H. Park, Nanotechnology 2014, 25, 105601.
- 15
- 15aN. C. Seeman, Nature 2003, 421, 427;
- 15bJ. Son, J. Lee, A. Tandon, B. Kim, S. Yoo, C. W. Lee, S. H. Park, Nanoscale 2015, 7, 6492.
- 16Y. V. Gerasimova, D. M. Kolpashchikov, Biosens. Bioelectron. 2013, 41, 386.
- 17
- 17aR. A. Muscat, K. Strauss, L. Ceze, G. Seelig, ACM SIGARCH Computer Architecture News 2013, 41, 177;
10.1145/2508148.2485938 Google Scholar
- 17bM. Teichmann, E. Kopperger, F. C. Simmel, ACS Nano 2014, 8, 8487;
- 17cN. Dalchau, H. Chandran, N. Gopalkrishnan, A. Phillips, J. Reif, ACS Synth. Biol. 2015, 4, 898.
- 18
- 18aA. J. Genot, J. Bath, A. J. Turberfield, J. Am. Chem. Soc. 2011, 133, 20080–20083;
- 18bM. Zhang, B. C. Ye, Chem. Commun. 2012, 48, 3647;
- 18cM. R. O'Steen, E. M. Cornett, D. M. Kolpashchikov, Chem. Commun. 2015, 51, 1429;
- 18dD. Y. Tam, Z. Dai, M. S. Chan, L. S. Liu, M. C. Cheung, F. Bolze, C. Tin, P. K. Lo, Angew. Chem. Int. Ed. 2016, 55, 164; Angew. Chem. 2016, 128, 172.
- 19S. T. Crooke, K. M. Lemonidis, L. Neilson, R. Griffey, E. A. Lesnik, B. P. Monia, Biochem. J. 1995, 312, 599.
- 20
- 20aJ. Kim, E. Winfree, Mol. Syst. Biol. 2011, 7, 465;
- 20bJ. Kim, K. S. White, E. Winfree, Mol. Syst. Biol. 2006, 2, 68;
- 20cM. Weitz, J. Kim, K. Kapsner, E. Winfree, E. Franco, F. C. Simmel, Nat. Chem. 2014, 6, 295.
- 21
- 21aQ. Chen, S. Y. Yoo, Y. H. Chung, J. Y. Lee, J. Min, J. W. Choi, Bioelectrochemistry 2016, 111, 1;
- 21bP. Siuti, J. Yazbek, T. K. Lu, Nat. Biotechnol. 2013, 31, 448;
- 21cB. S. Chen, C. Y. Hsu, J. J. Liou, J. Biomed. Biotechnol. 2011, 2011, 304236;
- 21dV. Privman, G. Strack, D. Solenov, M. Pita, E. Katz, J. Phys. Chem. B 2008, 112, 11777–11784;
- 21eN. Guz, T. A. Fedotova, B. E. Fratto, O. Schlesinger, L. Alfonta, D. M. Kolpashchikov, E. Katz, ChemPhysChem 2016, DOI: 10.1002/cphc.201600129.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.